
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1002 — #1028

i
i

i
i

i
i

carries_dependency Chapter 3 Unsafe Features

// my_app.cpp:
#include <my_shareddata.h>
#include <thread> // std::thread

int main()
{

std::thread t2(accessSharedData);
std::thread t1(initSharedData);

t1.join();
t2.join();

}

When this release-acquire synchronization paradigm is used, the compiler must maintain the
statements’ ordering to avoid breaking the release-acquire guarantee; the compiler must also
insert memory-fence instructions to prevent the hardware from breaking this guarantee.
If we wanted to modify the example above to use release-consume semantics, we would
somehow need to make the assert statements a part of the dependency chain on the load
from the guard object. We can accomplish this goal because reading data through a pointer
establishes a dependency chain between the reading of that pointer value and the reading
of the referenced data. Since release-consume allows the developer to specify that data of
concern, using that policy instead of release-acquire policy (in the code example above)
allows the compiler to be more selective in its use of memory fences:
// my_shareddata.cpp (use _*consume, not *_acquire):
#include <my_shareddata.h>

#include <atomic> // std::atomic, std::memory_order_release, and
// std::memory_order_consume (not *_acquire)

#include <cassert> // standard C assert macro

struct S
{

/* definition not changed */
};

static S data; // static for insulation (as before)
static std::atomic<S*> guard(nullptr); // guards just one struct S.

void initSharedData()
{

data.i = 42; // as before
data.c = 'c'; // as before
data.d = 5.0; // as before

guard.store(&data, std::memory_order_release); // Set &data, not 1.
}

1002

lorihughes
Inserted Text
*

lorihughes
Cross-Out

