
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1012 — #1038

i
i

i
i

i
i

final Chapter 3 Unsafe Features

it. Preventing a type from being inheritable closes the gap between what is possible with
built-in types, such as int and double, and what can additionally be done with typical user-
defined ones — specifically, inherit from them. See Use Cases — Suppressing derivation to
ensure portability on page 1014, i.e., Hyrum's law.
Although other use cases might be plausible, widespread, systemic use can run afoul of
stable reuse in general and hierarchical reuse in particular; see Potential Pitfalls —
Systemic lost opportunities for reuse on page 1023. Hence, the decision to use final on an
entire class even rarely — let alone routinely — is not to be taken lightly.
Prior to C++11’s introduction of the final specifier, there was no convenient way to ensure
that a user-defined type (UDT) was uninheritable, although Byzantine idioms to approx-
imate this restriction existed. For example, a virtual base class needs to be initialized in
each constructor of all concrete derived types, and that can be leveraged to prevent useful
inheritance. Consider a trio of classes, the first of which, UninheritableGuard, has a private
constructor and befriends its only intended derived class; the second, Uninheritable, derives
privately and virtually from UninheritableGuard; and the third, Inheriting, is a misguided
class that tries in vain to inherit from Uninheritable:
struct UninheritableGuard // private, virtual base class
{
private:

UninheritableGuard(); // private constructor
friend struct Uninheritable; // constructible only by Uninheritable

};

struct Uninheritable : private virtual UninheritableGuard
{

Uninheritable() : UninheritableGuard() { /*...*/ }
};

struct Inheriting : Uninheritable // Uninheritable is effectively final.
{

Inheriting()
: Uninheritable() // Error, Uninheritable() is inaccessible.
{ /*...*/ }

};

Any attempt to define — either implicitly or explicitly — a constructor for Inheriting will
fail with the same error due to the inaccessibility of the constructor for UninheritableGuard.
Using virtual inheritance typically requires each object of type Uninheritable to maintain
a virtual table pointer; hence, this solution does not come without overhead. Note also
that this workaround prior to final does not prevent the derivation itself, but merely the
instantiation of any ill-fated derived classes.
In the special case where all of the data members of the type are trivial, i.e., have no
user-provided special member functions (see Section 2.1.“Generalized PODs ’11” on
page 401), we could have instead created a type, e.g., Uninheritable2, that is implemented
as a union consisting of just a single struct:
1012

lorihughes
Inserted Text
Guard




