
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1024 — #1050

i
i

i
i

i
i

final Chapter 3 Unsafe Features

environments, such as a small organization overseeing a closed-source codebase where clients
are able to request timely code changes, encouraging liberal use of final might not be
problematic. Instead of promising everything up front, even when much of what is offered is
not immediately useful, the default development approach might reasonably be to provide
only what is immediately necessary and then quickly expose more if and as needed.
For other organizations, however, request-based code changes might not be a viable option
and can result in unacceptable delays in responding to client needs. Systemic use of final
inherently prevents opportunistic reuse that involves inheritance. Consequently, clients wish-
ing to adapt an immutable component are often forced to wrap it or else create a redundant
copy. Gratuitously forbidding clients from doing what they deem appropriate — and what
they would otherwise be able to do for free — might well be perceived as unnecessary
nannyism.8

Consider, for example, the Standard Template Library (STL) and, in particular, std::vector.
One might argue that std:vector was designed to facilitate generic programming, has
no virtual functions, and therefore should be specified as final to ensure its “proper”
use and no other. Suppose, on the other hand, that teachers wanting to teach their stu-
dents the value of defensive programming9 were to create an exercise to implement a
CheckedVector<T>, derived publicly from std::vector<T>.10 By inheriting constructors (see
Section 2.1.“Inheriting Ctors” on page 535), it is simple to implement this derived class with
an alternate implementation for just operator[]:
#include <vector> // std::vector
#include <cassert> // standard C assert macro

template <typename T>
class CheckedVector : public std::vector<T>
{
public:

using std::vector<T>::vector; // Inherit all ctors of std::vector<T>.

using reference = typename std::vector<T>::reference;
using const_reference = typename std::vector<T>::const_reference;
using size_type = typename std::vector<T>::size_type;

8“Unnecessary nannyism” is a phrase Bjarne Stroustrup used to characterize his initial decision to
restrict operators [], (), and ­> to be members; see stroustrup94, Chapter 3, section 3.6.2, “Members and
Friends,” pp. 81–83, particularly p. 83.

9See lakos14a and lakos14b.
10Bjarne Stroustrup stated (via email, April 11, 2021) that he himself has employed a class exercise in

which the only two functions in the derived type (that he typically calls “Vector”) hide the operator[]
overloads of std::vector. These implementations perform additional checking so that if they are ever called
out of their valid range, instead of resulting in undefined behavior, they do something sensible, e.g., throw
an exception or, even better, print an error message and then call abort to terminate the program. By
not employing assert, as we do in our example, Stroustrup avoids using conditional compilation, which
is not essential to the didactic purpose of this exercise. When necessary, Stroustrup removes Vector from
production use.

1024

lorihughes
Cross-Out

lorihughes
Inserted Text
Constructors




