
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1029 — #1055

i
i

i
i

i
i

Section 3.1 C++11 final

{
// Allocate memory using malloc and return address.

}
};

static_assert(sizeof(ObjectCreator<int,OpNewCreator>) == sizeof(std::size_t),"");
static_assert(sizeof(ObjectCreator<int,MallocCreator>)== sizeof(std::size_t),"");

Since OpNewCreator and MallocCreator do not have any data members, inheriting from
either of them does not increase the size of ObjectCreator on any compiler that implements
the empty base optimization. If someone later decides to declare them as final, inheriting
becomes impossible, even if just privately as an optimization:
template <typename T>
class OpNewCreator final { /*...*/ }; // subsequently declared final

template <typename T>
class MallocCreator final { /*...*/ }; // " " "

template <typename T, template<typename> class CreationPolicy>
class ObjectCreator : CreationPolicy<T> // Error, derivation is disallowed.
{ /*...*/ };

By declaring the empty bases class final, a valid use case is needlessly prohibited. Using
composition instead of private inheritance consumes at least one extra byte in the foot-
print of ObjectCreator,15 which will inevitably also come at the cost of additional padding
imposed by alignment requirements:
template <typename T, template<typename> class CreationPolicy>
class LargeObjectCreator
{

CreationPolicy<T> policy; // now consumes an extra byte &
std::size_t objectCount = 0; // with padding 8 extra bytes

public:
T* create()
{

++objectCount;

15C++20 adds a new attribute, [[no_unique_address]], that allows the compiler to avoid consuming
additional storage for data objects of empty classes:
struct A final { /* no data members */ };
struct S {

[[no_unique_address]] A a; static_assert(sizeof(a) >= 1, "");
int x; static_assert(sizeof(x) == 4, "");

}; static_assert(sizeof(S) == 4, "");

1029

lorihughes
Cross-Out

lorihughes
Inserted Text
empty-base-class




