
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1042 — #1068

i
i

i
i

i
i

friend '11 Chapter 3 Unsafe Features

Further Reading

• For yet more potential uses of the extended friend pattern in metaprogramming con-
texts, such as using CRTP, see alexandrescu01.

• lakos96, section 3.6, pp. 136–146, is dedicated to the classic use (and misuse) of
friendship.

• A synopsis of the history and process by which the prestandardization form of a friend
declaration in which the class specifier may be omitted is delineated in miller05.

• lakos20 provides extensive advice on sound physical design, which generally pre-
cludes long-distance friendship.

Appendix

Curiously Recurring Template Pattern Use Cases

Refactoring using the curiously recurring template pattern Avoiding code duplication
across disparate classes can sometimes be achieved using a strange template pattern first
recognized in the mid-90s, which has since become known as the curiously recurring template
pattern (CRTP). The pattern is curious because it involves the surprising step of declaring
as a base class, such as B, a template that expects the derived class, such as C, as a template
argument, such as T:
template <typename T>
class B
{

// ...
};

class C : public B<C>
{

// ...
};

As a trivial illustration of how the CRTP can be used as a refactoring tool, suppose that we
have several classes for which we would like to track, say, just the number of active instances:
class A
{

static int s_count; // declaration
// ...

public:
static int count() { return s_count; }

A() { ++s_count; }
A(const A&) { ++s_count; }

1042

lorihughes
Inserted Text
the 




