“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1046 — #1072

friend '11 Chapter 3 Unsafe Features

struct P : E<S> // Oops! should have been E4P -- a serious latent defect

{

int d_x;
int d_y;
}
void test2()
{
P p1; pl1.d_x = 10; pl.d_y = 15;
P p2; p2.d_x = 10; p2.d_y = 20;
assert(!(pl1 == p2)); // Oops! This fails because of E{Sy above.
}

Again, thanks to C++11’s extended friend syntax, we can defend against these defects
at compile time simply by making the CRTP base class’s default constructor private and
befriending its template parameter:

template <typename D>
class E

{
E() = default;
friend D;

I

Note that the goal here is not security but simply guarding against accidental typos, copy-
paste errors, and other occasional human errors. By making this change, we will soon realize
that there is no operator< defined for P.

Compile-time polymorphism using the curiously recurring template pattern Object-
oriented programming provides certain flexibility that at times might be supererogatory.
Here we will exploit the familiar domain of abstract/concrete shapes to demonstrate a
mapping between runtime polymorphism using virtual functions and compile-time poly-
morphism using the CRTP. We begin with a simple abstract Shape class that implements
a single, pure, virtual draw function:

class Shape

{
public:

virtual void draw() const = 0; // abstract draw function (interface)
Iy

From this abstract Shape class, we now derive two concrete shape types, Circle and
Rectangle, each implementing the abstract draw function:

1046

lorihughes
Cross-Out

lorihughes
Inserted Text
<

lorihughes
Cross-Out

lorihughes
Inserted Text
>

lorihughes
Cross-Out

lorihughes
Inserted Text
<

lorihughes
Cross-Out

lorihughes
Inserted Text
>

