“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1061 — #1087

Section 3.1 C++11 inline namespace

struct Z<double> { }; // Error, outer::Z or outer::inner::Zz?

Reopening namespaces can reopen nested inline ones

Another subtlety specific to inline namespaces is related to reopening namespaces. Consider
a namespace outer that declares a nested namespace outer::m and an inline namespace
inner that, in turn, declares a nested namespace outer:inner: :m. In this case, subsequent
attempts to reopen namespace m cause an ambiguity error:

namespace outer

{
namespace m { } // opens and closes ::outer::m
inline namespace inner
{
namespace n { } // opens and closes ::outer::inner::n
namespace m { } // opens and closes ::outer::inner::m
}
namespace n // OK, reopens ::outer::inner::n
{
struct S { }; // defines ::outer::inner::n::S
}
namespace m // Error, namespace m is ambiguous.
{
struct T { }; // with clang defines ::outer::m::T
}
}
static_assert(std::is_same<outer::n::S, outer::inner::n::S>::value, "");

In the code snippet above, no issue occurs with reopening outer::inner::n and no issue
would have occurred with reopening outer::m but for the inner namespaces having been
declared inline. When a new namespace declaration is encountered, a lookup determines
if a matching namespace having that name appears anywhere in the inline namespace
set of the current namespace. If the namespace is ambiguous, as is the case with m in the
example above, one can get the surprising error shown.? If a matching namespace is found

3Note that reopening already declared namespaces, such as m and n in the inner and outer example,
is handled incorrectly on several popular platforms. Clang, for example, performs a name lookup when
encountering a new namespace declaration and give preference to the outermost namespace found, causing
the last declaration of m to reopen ::outer: :m instead of being ambiguous. GCC, prior to 8.1 (c. 2018), does
not perform name lookup and will place any nested namespace declarations directly within their enclosing
namespace. This defect causes the last declaration of m to reopen ::outer::m instead of ::outer::inner::m
and the last declaration of n to open a new namespace, ::outer::n, instead of reopening ::outer::inner::n.

1061

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight
no code font, regular heading font

lorihughes
Highlight
retain italics, no code font

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Highlight
[remove code font]

