“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1069 — #1095

Section 3.1 C++11 inline namespace

}
#endif

The implementation file my_thing.cpp contains all of the noninline function bodies that
will be translated separately into the my_thing.o file:

// my_thing.cpp:
#include <my_thing.h>

namespace my // outer namespace (used directly by clients)
{
inline namespace impl_v1 // inner namespace (for implementer use only)
{
Thing::Thing() : i(®) // Load a 4-byte value into Thing's data member.
{
}
}

}

Observing common good practice, we include the header file of the component as the first
substantive line of code to ensure that — irrespective of anything else — the header always
compiles in isolation, thereby avoiding insidious include-order dependencies.> When we com-
pile the source file my_thing.cpp, we produce an object file my_thing.o containing the
definition of the same linker symbol, such as _zZN2my7impl_vi15ThingC1Ev, for the default
constructor of my: :Thing needed by the client:

$ g++ -c my_thing.cpp

We can then link main.o and my_thing.o into an executable and run it:

$ g++ -0 prog main.o my_thing.o
$./prog

0

Now, suppose we were to change the definition of my: :Thing to hold a double instead of an
int, recompile my_thing.cpp, and then relink with the original main.o without recompiling
main.cpp first. None of the relevant linker symbols would change, and the code would
recompile and link just fine, but the resulting binary prog would be IFNDR: the client
would be trying to print a 4-byte, int data member, i, in main.o that was loaded by the
library component as an 8-byte, double into d in my_thing.o. We can resolve this problem
by changing — or, if we didn’t think of it in advance, by adding — a new inline namespace
and making that change there:

5See lakos20, section 1.6.1, “Component Property 1,” pp. 210-212.

1069

lorihughes
Highlight

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Highlight
[remove code font]

