“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1106 — #1132

noexcept Specifier Chapter 3 Unsafe Features

Let’s now consider what happens if we flip the order of g() and s:

struct S { ~S(); };
void g() G_EXCEPTION_SPEC;
void f2() F_EXCEPTION_SPEC

{

S s; // non-trivially destructible automatic variable
g(); // throwing expression comes after variable

}

Lastly, we have a scenario in which declaring either f2, g, or both to be noexcept yields a
potential net reduction in size for the resulting translation unit. Let’s look at each of the
four possible combinations of noexcept assignment in turn. If neither f2 nor g is declared
noexcept, then the compiler is obliged to generate unwind code to clean up s and propagate
a potential exception thrown from g back to the caller of f2, which in turn can significantly
increase the size of the body of f2. If g is declared noexcept, then, regardless of whether
or not f2 is declared noexcept, no additional code needs to be laid down to guard against
the impossible case of an exception being thrown from g. Finally, if f is declared noexcept
but g is not, most, if not all, of the size benefit is likely to be realized, but now there
is the possibility of a small increase in the size of f resulting from the obligatory call to
std::terminate.

A measurement of relative compiled-code sizes in both build modes (unoptimized /optimized)
for each of the two function definitions, f1 and f2, and for each of the four combinations
of exception specifications on g and f, respectively, confirms our hypothesis, as shown in
Table 1.18

Table 1: Comparing code sizes without/with noexcept on f and/or g

q q G_S = noexcept
Candidate Function E S = noexcept)
void f1() F_.S { g(); S's; } 88/84* | 88/84 | 88/84 | 96/92
void f2() F_.S {Ss; g(); } | 152/132 | 88/84 | 88/84 | 96/92

a Where, e.g., 88/84 means 88 bytes unoptimized / 84 bytes optimized

Looking at the data above, we observe that there was no opportunity to reduce the size
of f1 from a throwing g because the invocation of g preceded construction of any non-
trivially destructible nonstatic local variables. But, unless g is itself declared noexcept (or

18For information on how to approach benchmarking the impact of noexcept, see dekker19b.

1106

lorihughes
Pencil
move left to align as marked

lorihughes
Pencil
move right to align as marked

