“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1123 — #1149

Section 3.1 C++11 noexcept Specifier

Given a nofail function, adding noexcept will not affect its in-contract behavior. For func-
tions that use exceptions to report failure, adding noexcept can easily turn a reliable function
having an infallible implementation into an optimistic one stripped of its ability to commu-
nicate any difficulties in satisfying the contract, should any arise. As an example, suppose
we applied noexcept to the two functions of std: :vector discussed above:

template <typename T>

class vector {

/7 ..
T& operator[](std::size_t index) noexcept;
// Return a reference to the modifiable element at the specified index.
// The behavior is undefined unless index < size().
T& at(std::size_t index) noexcept;
// Return a reference to the modifiable element at the specified index
// unless !(index < size()) in which case call std::terminate.
/7.
Y

For std::vector::operator[], adding noexcept has no effect on in-contract behavior but
limits flexibility (e.g., to provide arbitrary behavior when called out of contract). In the case
of std::vector::at, however, instead of detecting an out-of-range call and reporting it via
an exception, the function will now be forced to call std::terminate. To be clear, adding
noexcept to a function that might throw is not a means of suppressing (i.e., swallowing)
exceptions.

In short, when we see a function declared noexcept, it does not necessarily — in and of
itself — imply an optimistic let alone a nofail function. Decorating a function with noexcept
implies merely that the function cannot, under ng circumstances, throw an exception.

It is also important to note that nofail and fault tolerant are not the same thing. Achieving
a fault-tolerant nofail guarantee in, say, an embedded system typically requires redundant,
independently designed processes running on autonomous hardware. For example, to provide
a fault-tolerant nofail guarantee in a vehicle-control system, there might be three or more
redundant processes running on independent hardware that participate in a voting system
to determine the best course of action or to decide whether to trust some surprising sensor
data. The software is designed to fail hard if it detects that the subsystem in which it resides
has becomes unreliable and to restart quickly and smoothly while the redundant processes
continue voting and maintain control of the vehicle.

To be clear, nothing we have said above is about trying to defend against defects in our
own software. Extensive code review followed by extensive unit, integration, system, and
beta testing is how we do that. An effective technique for ensuring correctness that is
complementary to unit testing and static analysis involves redundant (optional) runtime
defensive checks. If one of these checks is enabled and determines that the software is no
longer in a logically coherent state then, rather than attempting to work around the defect,
the prevailing wisdom is to fail fast and loudly — but possibly after attempting to safely
save any important in-process data.

1123


lorihughes
Cross-Out

lorihughes
Inserted Text
any




