“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1129 — #1155

Section 3.1 C++11 noexcept Specifier

Forgetting to use the noexcept operator in the noexcept specifier

The noexcept specifier is commonly used in conjunction with the noexcept operator to
compute the exception specification of a function (or function template) from the exception
specification of a particular expression. The tested expression typically involves variables
of a type dependent on the template arguments, as otherwise the answer is known a priori
given specific types:

template <typename T, typename U>

void grow(T& lhs, const U& rhs) noexcept(noexcept(lhs += rhs))

{
lhs += rhs;
}
Using a nested noexcept — i.e., noexcept(noexcept(expression)) — looks odd but is

necessary; forgetting the inner noexcept — i.e., writing just noexcept (expression) — can,
in some cases, lead to code that still compiles but not with the expected semantics. Such
flawed exception specifications are easy to write yet often hard to spot in code review as they
look like the familiar noexcept specifier. The noexcept specifier expects a constant expres-
sion that is contextually convertible to bool. Fortunately, when the inner noexcept is
accidentally omitted, the common case is that expression is not a compile-time constant
expression and will thus trigger a compiler error. There are a few such mistakes that do con-
stitute valid code, however, and those mistakes can easily result in the function declaration
having the wrong exception specification.

Consider, for example, a pair of inline functions g1 and g2 that simply return false,
both declared as noexcept, but with g2 defined as constexpr (see Section 2.1.“constexpr
Functions” on page 257) while g1 is not. We then define two functions, f1 and f2, that
simply delegate to g1 and g2, respectively. Each tries to infer its corresponding exception
specification from the exception specification of its called function but neglects to nest the
noexcept operator within the noexcept specification:

bool gi1() noexcept { return false; }
constexpr bool g2() noexcept { return false; }

bool f1() noexcept(gl()) { return gi(); } // Error, g1() not a constant expr.
bool f2() noexcept(g2()) { return g2(); } // Bug, noexcept(false)

static_assert(noexcept(f2()) == noexcept(g2()), "");, // Error, T2 not noexcept

In the example above, the declaration of f1 is ill formed, producing a compilation error,
because the argument, g1(), to its noexcept specifier is not a constant expression. Hence,
the compiler prevents us from this pitfall in this common case. In the case of 2, however, the
expression specifier is valid because g2 () is a constant expression returning a type convertible

1129


lorihughes
Highlight
[remove code font]




