
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1168 — #1194

i
i

i
i

i
i

Ref-Qualifiers Chapter 3 Unsafe Features

ImmutableString insert(size_type pos, const ImmutableString& s) const
{

std::string dataCopy(asStdString()); // Copy string from this object.
dataCopy.insert(pos, s.asStdString()); // Do insert.
return std::move(dataCopy); // Move into return value.

}

const std::string& asStdString() const
{

return d_dataPtr ? *d_dataPtr : s_emptyString;
}

friend std::ostream& operator<<(std::ostream& os, const ImmutableString& s)
{

return os << s.asStdString();
}
// ...

};

const std::string ImmutableString::s_emptyString;

The internal representation of an ImmutableString is an std::string object allocated
on the heap and accessed via an instantiation of the C++ Standard reference-counted smart
pointer, std::shared_ptr. The copy and move constructors and assignment operators are
defaulted; when an ImmutableString is copied or moved, only the smart pointer member is
affected. Thus, even large string values can be copied in constant time.
The insert member function begins by making a copy of the internal representation
of the immutable string. The copy is modified and then returned; the representation in
the original ImmutableString is not modified:
void f1()
{

ImmutableString is("hello world");
std::cout << is << std::endl; // Print "hello world".
std::cout << is.insert(5, ",") << std::endl; // Print "hello, world".
std::cout << is << std::endl; // Print "hello world".

}

Immutable types are often paired with builder classes — mutable types that are used to
“build up” a value, which is then “frozen” into an object of the immutable type. Let’s define
a StringBuilder class with mutating append and erase member functions that modify its
internal state, and a conversion operator that returns an ImmutableString containing the
built-up value:
class StringBuilder
{

std::string d_string;

1168

lorihughes
Cross-Out

lorihughes
Inserted Text
having

lorihughes
Cross-Out

lorihughes
Inserted Text
The move operations are not implicitly declared because the copy operations have been defaulted or deleted




