
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 12 — #38

i
i

i
i

i
i

Attribute Syntax Chapter 1 Safe Features

Generalized Attribute Support

A new syntax for annotating code with attributes affords the portable provision of supple-
mentary information for compiler implementations and external tools.

Description

Developers are often aware of information that cannot be easily deduced directly from the
source code within a given translation unit. Some of this information might be useful to
certain compilers, say, to inform diagnostics or optimizations; typical attributes, however,
are designed to avoid affecting the semantics of a well-written program. By semantics, here
we typically mean any observable behavior apart from runtime performance. Generally,
ignoring an attribute is a valid and safe choice for a compiler to make. Sometimes, however,
an attribute will not affect the behavior of a correct program but might affect the behavior
of a well-formed yet incorrect one (see Use Cases — Stating explicit assumptions in code to
achieve better optimizations on page 16). Customized annotations targeted at external tools
might be beneficial as well.

C++ attribute syntax

C++ supports a standard syntax for attributes, introduced via a matching pair of [[and
]], the simplest of which is a single attribute represented using a simple identifier, e.g.,
attribute_name:
[[attribute_name]]

A single annotation can consist of zero or more attributes:
[[]] // permitted in every position where any attribute is allowed
[[foo, bar]] // equivalent to [[foo]] [[bar]]

An attribute might have an argument list consisting of an arbitrary sequence of tokens:
[[attribute_name()]] // zero­argument attribute
[[deprecated("bad API")]] // single­argument attribute
[[theoretical(1, "two", 3.0)]] // multiple­argument attribute

[[complicated({1, 2, 3} + 5)]] // arbitrary tokens1

Note that having an incorrect number of arguments or an incompatible argument type
is a compile-time error for all attributes defined by the Standard; the behavior for all
other attributes, however, is implementation-defined (see Potential Pitfalls — Unrec-
ognized attributes have implementation-defined behavior on page 18).

1GCC offered no support for certain tokens in the attributes until GCC 9.3 (c. 2020).

12

lorihughes
Cross-Out

lorihughes
Inserted Text
[delete hyphen; allow space]

lorihughes
Cross-Out

