“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 121 — #147

Section 1.1 C++11 static_assert

value, whose value is false.

template <typename T>
void serialize(char* buffer, const T& object, SerializableTag<false>) // (2c)

{

static_assert(0 == sizeof(T), "T must be serializable."); // OK
// not too obviously ill formed: compile-time error when instantiated

}

Using this sort of obfuscation is not guaranteed to be either portable or future-proof.

Misuse of static assertions to restrict overload sets

Even if we are careful to fool the compiler into thinking that a specialization is wrong only
if instantiated, we still cannot use this approach to remove a candidate from an overload set
because translation will terminate if the static assertion is triggered. Consider this flawed
attempt at writing a process function that will behave differently depending on the size of
the given argument:

template <typename T>
void process(const T& x) // (1) first definition of process function

{
static_assert(sizeof(T) <= 32, "Overload for small types"); // BAD IDEA
// ... (process small types)

}

template <typename T>
void process(const T& x) // (2) compile-time error: redefinition of function

{
static_assert(sizeof(T) > 32, "Overload for big types"); // BAD IDEA

// ... (process big types)
}

While the intention of the developer might have been to statically dispatch to one of the two
mutually exclusive overloads, the ill-fated implementation above will not compile because the
signatures of the two overloads are identical, leading to a redefinition error. The semantics of
static_assert are not suitable for the purposes of compile-time dispatch, and SFINAE-
based approaches might be used instead.

To achieve the goal of removing up-front a specialization from consideration, we wit-reedte
employ SFINAE. To do that, we must instead find a way to get the failing compile-time
expression to be part of the function’s declaration:

121


lorihughes
Cross-Out

lorihughes
Inserted Text
Note that this intermediate class template could always have a specialization for some type where `value` is `true`; thus the possibility always exists that this function template could be instantiated with types for which such a specialization of `AlwaysFalse` is provided, making the template itself well formed even when all instantiations would, in practice, be ill formed.

lorihughes
Cross-Out

lorihughes
Inserted Text
A similar workaround using an expression that is always guaranteed to be false would, however, be ill formed, no diagnostic required:

lorihughes
Cross-Out

lorihughes
Inserted Text
in an overload set

lorihughes
Cross-Out

lorihughes
Inserted Text
can




