
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1235 — #1261

i
i

i
i

i
i

Glossary

explicit instantiation definition – a directive (see Section 2.1.“extern template” on page 353),
for a given template and specific template arguments, to instantiate and emit, in the current
translation unit, any associated object code for entities that the template defines. Note that at
most one such directive per template specialization may appear in a program, no diagnostic
required; see also explicit instantiation declaration and Ill Formed, No Diagnostic Required.
extern template (353)

explicit instantiation directive – either an explicit instantiation declaration or an explicit
instantiation definition. extern template (353)

explicit specialization – a declaration or complete definition of a template specialization, used
instead of instantiating the corresponding primary template (or any partial specialization)
that might be selected when supplied with those same arguments at the point of use; see
primary class template declaration and partial ordering of class template specialization.

explicit template-argument specification – the specification, when invoking a function tem-
plate — e.g., template <typename T, typename U> func() — with a sequence of template
arguments (e.g., int, double) surrounded by < and >, e.g., func<int, double>(0, 0); such
explicitly specified template arguments will be used as is and will not require template argu-
ment deduction. Variadic Templates (895)

explicitly captured – implies, for a given variable, that it is named in the capture list of a lambda.
Lambdas (582)

expression – a valid sequence of operators and operands that specifies a computation; the evalua-
tion of an expression may produce a value or cause side effects. Unlike a statement, expressions
may be nested; see also outermost expression.

expression alias – an often considered, potential future feature of C++ that would support a
parameterized alias for an expression. Such a feature would substitute the expression in-
place, much like a hygienic macro, behaving like a forced inline function having automat-
ically deduced result type and exception specification (see Section 3.1.“noexcept Specifier”
on page 1085), but without the possibility of separating declaration and definition. noexcept

Specifier (1146)
expression SFINAE – the use of SFINAE to exclude a function template specialization from

consideration during overload resolution or a (class) template partial specialization during
template instantiation, based on the validity of a particular expression. This form of SFINAE
enables programming patterns such as the detection idiom. decltype (29), static_assert (122),
Trailing Return (126)

expression template – a template metaprogramming pattern in which overloaded operators
return compound types that capture, within their template parameters, an entire expression.
When these complex types are converted to a desired result type, an optimized
implementation of the entire expression will be evaluated, instead of a potentially much less
efficient evaluation of each individual subexpression. This general technique has been used
often in libraries such as Eigen (eigen) to optimize computations involving large matrices.
auto Variables (202)

extended alignment – an alignment larger than the alignment of std::max_align_t. alignas (168)
external linkage – linkage that allows a name to refer to the same entity across translation units;

see also internal linkage.
factory function – one whose purpose is to construct, initialize, and return an object, often by

value. Rvalue References (778), User-Defined Literals (836), Variadic Templates (929)

1235

lorihughes
Line
[add a new glossary item; the glossary will reflow from this point on.]

extended integer type – an **integral type** such as `__int128` that is supported by the current platform; its size and **value representation** are **implementation defined**, and on any other platform, it may not exist or may have a different definition.

