“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1251 — #1277

Glossary

narrowing the contract — evolving a function contract by strengthening or otherwise adding
new (nonduplicative) preconditions, thereby reducing the domain of the function, which
might impact backward compatibility for its users; see also widening the contract. Rvalue
References (793)

cemmﬁwosmm&mgﬁem&mmo%eﬁﬁhallgnas (179)

alignof (184), Underlying Type '11 (831)

negative testing — the testing practice of deliberately violating a precondition when invoking a
function having a narrow contract in a unit test. Such testing is important in practice to
ensure that any defensive checks are implemented as intended (e.g., without all-too-common
off-by-one errors) and requires that the test harness be compiled in a mode in which such
defensive checks would be expected to detect those specific contract violations at runtime
(see production build). These tests are often implemented by configuring a suitable defensive
checking framework to throw a specific test exception on a contract violation or else via death
tests, in which case a process must be started for each individual successful trial. Rovalue

References (794)

new handler — a callback function registered wusing the standard library function
std: :set_new_handler that will be invoked by standard allocation functions whenever a mem-
ory allocation attempt fails. Note that this callback function may try to free additional memory
to allow for a retry of the allocation attempt. alignof (193)

nibble - half a byte, i.e., 4 bits. Digit Separators (153)

nofail - implies, for a given function or guarantee, that it is a nofail function or nofail guarantee,
respectively. noexcept Specifier (1116)

nofail function — one that provides no failure mode (i.e., has no out clause in the contract describ-
ing its interface) and has an infallible implementation, irrespective of whether it provides a
nofail guarantee. noexcept Specifier (1117)

nofail guarantee — one that, for a given function, implies it is now and always will be a nofail
function. noexcept Specifier (1117)

nondefining declaration — one — such as class Foo; — that does not provide all of the collateral
information, such as function or class body, associated with a complete definition. Note that
a typedef or using declaration (see Section 1.1.“using Aliases” on page 133) is nondefining
as type aliases are declared, not defined. Also note that an opaque enumeration declaration
provides only the underlying type for that enumeration, sufficient to instantiate opaque objects
of the enumerated type yet not sufficient to interpret its values; hence, it too is not (fully)
defining and therefore is nondefining. Note that a nondefining declaration may be repeated
within a single translation unit (TU); see also defining declaration. Rvalue References (729)

1251

lorihughes
Cross-Out

lorihughes
Inserted Text
can be a property of an object or of a size.

For an object of specified type, natural alignment is defined recursively as the maximum of the natural alignments of each of its constituent parts. An object of scalar type is naturally aligned if its size divides the value of its numerical address in memory. For class types (including unions), natural alignment is defined as the maximum of the natural alignments of all its base classes and non`static` data members.

For an object of unspecified type and given size, natural alignment refers to the minimum alignment value that is sufficiently strict to accommodate any object of the given size provided that neither it nor any of its subobjects has had its alignment requirements artificially strengthened via explicit use of an alignment specifier (see Section 2.1.“alignas” on page 168). Numerically, the natural alignment for an arbitrary object (of unknown type) of size N is gcd(N, `sizeof(std::max_align_t)`) — in other words, the largest power of 2, not larger than `alignof(std::max_align_t)`, that evenly divides N, e.g., naturalAlignment(4) = 4, naturalAlignment(5) = 1, and naturalAlignment(6) = 2.

Natural alignment is used when only the size (but not the type) of the object is known; for example, allocating 4 bytes with natural alignment will result in 4-byte aligned storage because the computation cannot distinguish between, for example, a single `int` (having a required alignment of 4) and a struct containing two short data members (having a required alignment of only 2). Note that the C++ Standard defines alignment itself more generally --- in a way that does not require addresses to have an \emph{absolute} numerical value (relative to zero) --- to be a non-negative integral power of 2 representing the recurring number of bytes between addresses at which an object of a given complete type is permitted to reside.

