
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1254 — #1280

i
i

i
i

i
i

Glossary

might need to provide two header files — one containing the opaque enumeration declaration
and a second (which may include the first) that provides the full definition; see Section 2.1.
“Opaque enums” on page 660. Opaque enums (663)

operator – a kind of function that has a non-function-like syntax known to the compiler and con-
sisting of either a keyword or other token (typically comprising just punctuation characters)
that can used as part of an expression alongside its operands — e.g., sizeof(a + b), where
both + and sizeof are operators. Token-based operators include assignment (=), equality com-
parison (==), member access, subscripting ([]), sequencing (,), conditional (?:), function call
(()), etc. Keyword-based operators include sizeof, new, delete, typeid, and, as of C++11,
alignof, decltype, and noexcept. Many of the built-in token-based operators, along with
new and delete, can be overloaded for class types; notable exceptions include dot (.) and
conditional (?:). constexpr Functions (265)

ordinary character type – one that is char, signed char, or unsigned char. Note that char8_t
(introduced in C++20) is not an ordinary character type. Generalized PODs ’11 (501)

out clause – in law, a clause that permits signatories to a contract to opt out of particular provi-
sions or to terminate the contract early. In software contracts, it is a statement in a contract
that (1) allows a function not to achieve its stated goal and (2) typically specifies a channel
by which it will inform the caller of its failure to do so and perhaps also an explanation of
what precipitated that failure. noexcept Specifier (1117)

out of contract – implies, for a given invocation of a function, that one or more of its precon-
ditions (explicitly stated or otherwise) was not satisfied. Rvalue References (744), noexcept

Specifier (1117)
outermost expression – the expression E, for a given expression S, such that S is a subexpression

of E and E is not a subexpression of any other expression; see also full expression. Rvalue
References (820)

over-aligned – implies, for a given type, that its alignment requirement exceeds that of what
would otherwise be its minimal required alignment; see also natural alignment. alignof (185)

overload – (1) a member of a set of functions or operators that have the same name but different
signatures or (2) the act of creating such a similarly named function or operator (see also
overloading). Rvalue References (741)

overload resolution – the process by which, after name lookup, the C++ compiler determines
which, if any, function from the set of candidate functions is the unique best match for a
given argument list. Deleted Functions (53), Rvalue References (710), User-Defined Literals (841)

overload set – the set of (viable) candidates (overloads), for a given invocation of a function (or
operator), that the compiler refines during overload resolution until it finds the best viable
function, if one exists, for the supplied argument list.

overloading – the act of creating an overload.
overriding – providing, for a virtual function declared in a base type, a suitable implementation

specific to a derived type. Inheriting Ctors (539)
owned resource – one, such as dynamic memory, a socket, or a shared-memory handle, that is

managed by an object (a.k.a. the owner), typically with the expectation that the owner will
release the resource when it no longer needs it, e.g., in the owner’s destructor. Move operations
typically transfer an owned resource from one owner to another. On occasion, a resource can
have more than one owner — such as in the case of std::shared_ptr — in which case the last
owner to be destroyed is typically responsible for releasing the resource. Rvalue References (741)

1254

lorihughes
Cross-Out

lorihughes
Inserted Text
implies, for a given class or union type, that its alignment requirement exceeds that of the maximum default alignment for any *fundamental* (arithmetic, enumeration, or pointer) type. Within a class or union type, a base or member having an alignment that is artificially more strict than its default alignment is sometimes also referred to as *over* *aligned*. See also **natural** **alignment**.

