
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1271 — #1297

i
i

i
i

i
i

Glossary

non-trivial. Note that a trivially copyable class might not be trivially copy constructible and
vice versa. Generalized PODs ’11 (521)

trivially copyable type – a scalar type, trivially copyable class, array of such a type, or cv-
qualified version of such a type; such types are assignable by external bitwise copying, e.g.,
using std::memcpy. Generalized PODs ’11 (468)

trivially default constructible – implies, for a given type T, that the standard library type trait
std::is_trivially_default_constructible<T>::value is true. In other words, T is a scalar
type, or both the default constructor and destructor of T are trivial and usable (i.e., public,
nondeleted, and unambiguously invocable), or T is an array of such types. Note that a trivial
type is not required to have a public or unambiguous default constructor or destructor and is
thus not necessarily trivially default constructible. Generalized PODs ’11 (401)

trivially destructible – implies, for a given type, that it is a trivially destructible type, and,
hence, failing to execute that destructor before deallocating or reusing an object’s memory
is typically of no practical consequence; see also notionally trivially destructible. constexpr

Variables (305), Generalized PODs ’11 (402), noexcept Specifier (1102)

trivially destructible type – one for which the standard library type trait
std::is_trivially_destructible<T>::value is true — i.e., it is a class type with a trivial,
public, and nondeleted destructor, a scalar type, an array of such types with known bound,
or a reference type. Note that a trivial type is not required to have a public destructor and is
thus not necessarily a trivially destructible type; see also usable. Generalized PODs ’11 (430)

trivially move assignable – implies, for a given type T, that the standard library type trait
std::is_trivially_move_assignable<T>::value is true — i.e., an lvalue of type T can be
unambiguously assigned-to from an rvalue of type T via a trivial, public, and nondeleted
assignment operator. Note that a trivial or trivially copyable type is not required to have
a public unambiguous move-assignment operator and is thus not necessarily trivially move
assignable; see also usable.

trivially move constructible – implies, for a given type T, that the standard library type trait
std::is_trivially_move_constructible<T>::value is true — i.e., T is trivially destructible
and can be unambiguously constructed from an rvalue of type T via a trivial, public, and
nondeleted constructor. Note that a trivial or trivially copyable type is not required to have a
public, unambiguous move constructor or destructor and is thus not necessarily trivially move
constructible.

TU – short for translation unit.
type alias – an alternate name for a type, declared using a typedef or, as of C++11, a using

declaration; see Section 1.1.“using Aliases” on page 133. friend ’11 (1031)

type deduction – short for function-template-argument type deduction. Forwarding References (380)

type erasure – an idiom enabling dynamic polymorphism without requiring inheritance from a
base class or overriding virtual functions. Type erasure in C++ involves creating a class C
that defines an API via its (nonvirtual) public interface and supplies a constructor (or other
member [or even friend] function) template that adapts an object of its parameter type T to
that API. This approach allows C to be used as a vocabulary type, supporting polymorphism
across API boundaries without requiring T objects to have a common base class nor requiring
clients to be templates. For example, in the C++ Standard Library, std::function uses type
erasure to erase the type of an invocable object, and std::shared_ptr uses it to erase the
type of its deleter. Lambdas (602)

1271

lorihughes
Cross-Out




