
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1276 — #1302

i
i

i
i

i
i

Glossary

and prvalue. In addition, two compound value categories — glvalue (comprising lvalue and
xvalue) and rvalue (comprising xvalue and prvalue) — serve to characterize values that
(1) have identity and (2) are expiring, respectively; see Section 2.1.“Rvalue References” on
page 710. decltype (25), Forwarding References (377), Lambdas (590), Range for (680), Rvalue
References (710), Generic Lambdas (972), Lambda Captures (992), noexcept Specifier (1145), Ref-
Qualifiers (1153), auto Return (1184), decltype(auto) (1205)

value constructor – one designed to assemble (as opposed to copy or move) an overall value from
one or more supplied arguments and that (absent defaulted arguments) is never also a default
constructor, copy constructor, or move constructor. Defaulted Functions (37), Generalized PODs
’11 (450), Rvalue References (753), User-Defined Literals (836), Variadic Templates (942)

value initialization – a form of initialization, typically invoked by supplying an empty (rather
than absent) initializer list, such as () or {}, that (1) performs zero initialization for scalar
types as well as class types having a trivial default constructor, (2) invokes the default con-
structor for class types having a user-provided default constructor, or (3) performs zero ini-
tialization and then invokes the default constructor for all other class types, i.e., those that
have a compiler-generated non-trivial default constructor. For an array type, each individ-
ual element is value initialized. Value initialization for a type having a deleted or ambiguous
default constructor is ill formed — even if said initialization would not involve invoking the
default constructor. Braced Init (216), constexpr Functions (273), Generalized PODs ’11 (493)

value initialized – implies, for a given object, that it has undergone value initialization. Braced
Init (221), Generalized PODs ’11 (412), Rvalue References (764)

value representation – the bits in an object’s footprint that represent its value, excluding, e.g.,
those used for padding or to represent a virtual-function-table pointer or virtual-base pointer.
Generalized PODs ’11 (405)

value semantic (of a type) – implies, for a given type, that it has value semantics. Defaulted
Functions (36), Delegating Ctors (48), alignof (187), Opaque enums (663), Rvalue References (743)

value-semantic type (VST) – one, specifically a class type, that has value semantics. Forwarding
References (386), Generalized PODs ’11 (452), Rvalue References (742), Lambda Captures (992),
friend ’11 (1034)

value semantics – the fundamental, language-independent, mathematical principles that must
be satisfied by any type that properly represents a platonic value; see lakos15a. Importantly,
two objects of a value-semantic type do not have the same value (as defined by their respec-
tive salient attributes) if there exists a sequence of salient operations (a.k.a. a distinguishing
sequence) that, when applied to each object separately, mutates the respective objects such
that they can be observed not to have (i.e., represent) the same value. Note that a well-written
C++ value-semantic type will also be a regular type (see stepanov09, section 1.5, “Regular
Types,” pp. 6–8) unless its (homogeneous) equality-comparison operator (==) would be too
computationally complex; if it’s omitted, the type becomes semiregular (see stepanov15,
section 10.3, “Concepts,” pp. 181–184, specifically p. 184); see also lakos15b. Also note, as
of C++20, the Standard Library supports the concepts std::regular and std::semiregular.
noexcept Operator (627), Rvalue References (811)

variable – a named object having automatic, static, or thread storage duration.
variable template – one — e.g., template <typename T> T var; — that can be instantiated to

yield a family of like-named variables, each of distinct type, e.g., var<int>, var<double>; see
Section 1.2.“Variable Templates” on page 157. constexpr Variables (302)

1276

lorihughes
Cross-Out

lorihughes
Inserted Text
Constructors




