
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 131 — #157

i
i

i
i

i
i

Section 1.1 C++11 Unicode Literals

generally be controlled through compiler flags. The only portable way of embedding the cock-
tail emoji is to use its corresponding Unicode code point escape sequence (u8"\U0001F378").

Lack of library support for Unicode

Essential vocabulary types, such as std::string, are completely unaware of encoding.
They treat any stored string as a sequence of bytes. Even when correctly using Unicode string
literals, programmers unfamiliar with Unicode might be surprised by seemingly innocent
operations, such as asking for the size of a string representing the cocktail emoji:

#include <cassert> // standard C assert macro
#include <string> // std::string

void f()
{

std::string cocktail(u8"\U0001F378"); // big character
assert(cocktail.size() == 1); // assertion failure

}

Even though the cocktail emoji is a single code point, std::string::size returns the num-
ber of code units (bytes) required to encode it. The lack of Unicode-aware vocabulary types
and utilities in the Standard Library can be a source of defects and misunderstandings,
especially in the context of international program localization.

Problematic treatment of UTF-8 in the type system

UTF-8 string literals use char as their underlying type. Such a choice is inconsistent
with UTF-16 and UTF-32 literals, which provide their own distinct character types, char16_t
and char32_t, respectively. Lack of a UTF-8-specific character type precludes providing
distinct behavior for UTF-8 encoded strings using function overloading or template special-
ization because they are indistinguishable from strings having the encoding of the execution
character set. Furthermore, whether the underlying type of char is a signed or unsigned
type is itself implementation defined. Note that char is distinct from both signed char and
unsigned char, but its behavior is guaranteed to be the same as one of those.
C++20 fundamentally changes how UTF-8 string literals work, by introducing a new non-
aliasing char8_t character type whose representation is guaranteed to match unsigned char.
The new character type provides several benefits.

• Ensures an unsigned and distinct type for UTF-8 character data

• Enables overloading for regular string literals versus UTF-8 string literals

• Potentially achieves better performance due to the lack of special aliasing rules

131

lorihughes
Cross-Out

lorihughes
Inserted Text
element




