
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1327 — #1353

i
i

i
i

i
i

Index

lambda expressions
annoyances, 611–614

capturing *this by copy, 611–612
debugging, 611
mixing immediate and deferred-

execution code, 612–613
trailing punctuation, 613–614

configuring algorithms via, 86–87
decltype(auto) placeholders and, 1206
deduced return types for, 1189–1190, 1197–

1198
description of, 573–597
further reading for, 614
generic lambdas

annoyances, 981–984
description of, 968–975
further reading for, 985
potential pitfalls, 981
use cases, 975–981

local/unnamed types, 83–84
parts of, 577–578

closures, 578–581
lambda body, 595–597
lambda captures, 581–591
lambda declarators, 591–595
lambda introducers, 581–591

potential pitfalls, 607–611
dangling references, 607–608
local variables in unevaluated contexts,

610–611
mixing captured and noncaptured vari-

ables, 609
overuse, 609

use cases, 597–607
emulating local functions, 598–599
emulating user-defined control con-

structs, 599–600
event-driven callbacks, 603–604
interface adaptation, partial application,

currying, 597–598
recursion, 604–605
stateless lambdas, 605–607
with std::function, 601–603
variables and control constructs in

expressions, 600–601
lambda introducers, 581–591, 986
lambda-capture expressions. See also auto vari-

ables; braced initialization; forwarding
references; lambda expressions; rvalue
references

annoyances, 993–994
difficulty of synthesizing const data

members, 993–994
std::function supports only copyable

callable objects, 994

description of, 986–988
further reading for, 995
potential pitfalls, 992–993
use cases, 988–992

capturing modifiable copy of const vari-
able, 990–992

moving objects into closure, 988–989
providing mutable state for closure, 989–

990
lambda-capture list, 919–921
language undefined behavior, 1115
libraries

Guidelines Support Library, 17
Ranges Library, 391–393, 686n4, 687n5
resilience to code changes, 203

library undefined behaviors, 1115
lifetime extensions, 1162, 1213

prvalues, 720
range-based for loops, 680, 691–696
temporary objects, 819–820

limerick in C++ Language Standard, 1081–1082
linear search in variadic templates, 957
linearInterpolation function, 16–17
linkage, 83
link-safe ABI versioning, 1067–1071
link-time optimization, 1094, 1143
Liskov, Barbara, 1026, 1030
Liskov Substitution Principal (LSP), 1030
list initialization

braced initialization and, 215, 233–234
deducing, 210–211

list initialized literal types, 260
literal types, 278–284

aggregate types as, 279–280
array types as, 280
compile-time constructible, 462–464
in constant expressions, 260–261, 273, 277–

278
constexpr constructors and, 281
cv-qualifiers as, 280
identifying, 282–284
pointers as, 281
reference types as, 279
scalar types as, 278
std::initializer_list, 556
std::is_literal_type, 283n14
trivially destructible types as, 431
user-defined, 280
variable templates of, 302
void return type as, 280

literals
binary

description of, 142–143
further reading for, 146
use cases, 144–146

1327

lorihughes
Highlight
[set Ranges in gloss font]

lorihughes
Cross-Out

lorihughes
Inserted Text
Principle




