
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 142 — #168

i
i

i
i

i
i

Binary Literals Chapter 1 Safe Features

Binary Literals: The 0b Prefix

The 0b (or 0B) prefix, modeled after 0x, enables integer literals to be expressed in base 2.

Description

A binary literal is an integral value represented in code in a binary numeral system. A
binary literal consists of a 0b or 0B prefix followed by a nonempty sequence of binary digits,
namely, 0 and 11:
int i = 0b11110000; // equivalent to 240, 0360, or 0xF0
int j = 0B11110000; // same value as above

The first digit after the 0b prefix is the most significant one:
static_assert(0b0 == 0, ""); // 0*2^0
static_assert(0b1 == 1, ""); // 1*2^0
static_assert(0b10 == 2, ""); // 1*2^1 + 0*2^0
static_assert(0b11 == 3, ""); // 1*2^1 + 1*2^0
static_assert(0b100 == 4, ""); // 1*2^2 + 0*2^1 + 0*2^0
static_assert(0b101 == 5, ""); // 1*2^2 + 0*2^1 + 1*2^0
// ...
static_assert(0b11010 == 26, ""); // 1*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0

Leading zeros — as with octal and hexadecimal (but not decimal) literals — are ignored
but can be added for readability:
static_assert(0b00000000 == 0, "");
static_assert(0b00000001 == 1, "");
static_assert(0b00000010 == 2, "");
static_assert(0b00000100 == 4, "");
static_assert(0b00001000 == 8, "");
static_assert(0b10000000 == 128, "");

The type of a binary literal is by default an int unless that value cannot fit in an int. In
that case, its type is the first type in the sequence {unsigned int, long, unsigned long,
long long, unsigned long long} in which it will fit. This same type list applies for both
octal and hex literals but not for decimal literals, which, if initially signed, skip over
any unsigned types, and vice versa. If neither of those is applicable, the compiler may use
implementation-defined extended integer types such as __int128 to represent the literal if
it fits; otherwise, the program is ill formed:

1Prior to being introduced in C++14, GCC supported binary literals — with the same syntax as the
standard feature — as a nonconforming extension since version 4.3.0, released in March 2008; for more
details, see https://gcc.gnu.org/gcc-4.3/.

142

lorihughes
Cross-Out

lorihughes
Inserted Text
The type of a binary literal, just as with a decimal, octal, or hexadecimal literal, is determined by the compiler using a combination of the literal's suffix, if any, and its value. For each literal, a sequence of types --- initially `int`, `unsigned int`, `long`, `unsigned long`, `long long`, and `unsigned long long` --- is determined by the compiler. For unsigned literals, i.e., those having a `u` or `U` suffix, all *signed* types (e.g., `int`, `long` `long`) from the initial sequence above are removed by the compiler. For decimal (but not nondecimal) literals having no `u` or `U` suffix, all *unsigned* types (e.g., `unsigned` `long`) are removed by the compiler. The presence of an `l` or `L` suffix will prompt the compiler to remove `int` and `unsigned int` from the sequence, while an `ll` or `LL` will remove those types and `long` and `unsigned long` too. The earliest type in the resulting sequence that can represent the value of the literal will be used by the compiler. If no suitable type is found, an (implementation-defined) extended integer type of an appropriate size and signedness, such as `__int128` or `unsigned` `__int128`, may be used by the compiler; otherwise, the program is ill formed:

lorihughes
Sticky Note
[this replacement will flow onto the next page but no reflow will occur beyond page 143.]

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 143 — #169

i
i

i
i

i
i

Section 1.2 C++14 Binary Literals

// example platform 1:
// (sizeof(int): 4; sizeof(long): 4; sizeof(long long): 8)
auto i32 = 0b0111...[24 1­bits]...1111; // i32 is int.
auto u32 = 0b1000...[24 0­bits]...0000; // u32 is unsigned int.
auto i64 = 0b0111...[56 1­bits]...1111; // i64 is long long.
auto u64 = 0b1000...[56 0­bits]...0000; // u64 is unsigned long long.
auto i128 = 0b0111...[120 1­bits]...1111; // Error, integer literal too large
auto u128 = 0b1000...[120 0­bits]...0000; // Error, integer literal too large

// example platform 2:
// (sizeof(int): 4; sizeof(long): 8; sizeof(long long): 16)
auto i32 = 0b0111...[24 1­bits]...1111; // i32 is int.
auto u32 = 0b1000...[24 0­bits]...0000; // u32 is unsigned int.
auto i64 = 0b0111...[56 1­bits]...1111; // i64 is long.
auto u64 = 0b1000...[56 0­bits]...0000; // u64 is unsigned long.
auto i128 = 0b0111...[120 1­bits]...1111; // i128 is long long.
auto u128 = 0b1000...[120 0­bits]...0000; // u128 is unsigned long long.

Purely for convenience of exposition, we have employed the C++11 auto feature to con-
veniently capture the type implied by the literal itself; see Section 2.1.“auto Variables” on
page 195. Separately, the precise initial type of a binary literal, like any other literal, can be
controlled explicitly using the common integer-literal suffixes {u, l, ul, ll, ull} in either
lower- or uppercase:

auto i = 0b101; // type: int; value: 5
auto u = 0b1010U; // type: unsigned int; value: 10
auto l = 0b1111L; // type: long; value: 15
auto ul = 0b10100UL; // type: unsigned long; value: 20
auto ll = 0b11000LL; // type: long long; value: 24
auto ull = 0b110101ULL; // type: unsigned long long; value: 53

Finally, note that affixing a minus sign to a binary literal (e.g., ­b1010) — just like any
other integer literal (e.g., ­10, ­012, or ­0xa) — is parsed as a non-negative value first, after
which a unary minus is applied:

static_assert(sizeof(int) == 4, ""); // true on virtually all machines today
static_assert(­0b1010 == ­10, ""); // as if: 0 ­ 0b1010 == 0 ­ 10
static_assert(0b0111...[24 1­bits]...1111 // signed

!= ­0b0111...[24 1­bits]...1111, ""); // signed

static_assert(0b1000...[24 0­bits]...0000 // unsigned
!= ­0b1000...[24 0­bits]...0000, ""); // unsigned

143

lorihughes
Rectangle
Change the dots to vertically centered dots and set the whole marked area in italics.

lorihughes
Rectangle
Change the dots to vertically centered dots and set the whole marked area in italics.

lorihughes
Cross-Out

lorihughes
Rectangle
Change the dots to vertically centered dots and set the whole marked area in italics.

lorihughes
Cross-Out

lorihughes
Inserted Text
=
[==]

