
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 148 — #174

i
i

i
i

i
i

deprecated Chapter 1 Safe Features

The [[deprecated]] attribute can be used portably to decorate other entities: class,
struct, union, type alias, variable, data member, function, enumeration, template
specialization.2

A programmer can supply a string literal as an argument to the [[deprecated]] attribute
— e.g., [[deprecated("message")]] — to inform human users regarding the reason for the
deprecation:
[[deprecated("too slow, use algo1 instead")]] void algo0();

void algo1();

void f()
{

algo0(); // Warning: algo0 is deprecated; too slow, use algo1 instead.
algo1();

}

An entity that is initially declared without [[deprecated]] can later be redeclared with the
attribute and vice versa:
void f();
void g0() { f(); } // OK, likely no warnings

[[deprecated]] void f();
void g1() { f(); } // Warning: f is deprecated.

void f();
void g2() { f(); } // Warning: f is deprecated still.

As shown in g2 in the example above, redeclaring an entity that was previously decorated
with [[deprecated]] without the attribute leaves the entity still deprecated.

Use Cases

Discouraging use of an obsolete or unsafe entity

Decorating any entity with the [[deprecated]] attribute serves both to indicate a particular
feature should not be used in the future and to actively encourage migration of existing uses
to a better alternative. Obsolescence, lack of safety, and poor performance are common
motivators for deprecation.
As an example of productive deprecation, consider the RandomGenerator class having a
static nextRandom member function to generate random numbers:

2Applying [[deprecated]] to a specific enumerator or namespace, however, is guaranteed to be supported
only since C++17; see smith15a.

148

lorihughes
Highlight
[remove ital]




