
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 155 — #181

i
i

i
i

i
i

Section 1.2 C++14 Digit Separators

Table 3: Available precisions for various IEEE-754 floating-point types
Name Common Significant Decimal Exponent Dynamic

Name Bitsa Digits Bits Range
binary16 Half precision 11 3.31 5 ∼ 6.5× 105

binary32 Single precision 24 7.22 8 ∼ 3.4× 1038

binary64 Double precision 53 15.95 11 ∼ 10308

binary80 Extended precision 69 20.77 11 ∼ 10308

binary128 Quadruple precision 113 34.02 15 ∼ 104932

a Note that the most significant bit of the mantissa is always a 1 for normalized numbers and 0 for
denormalized ones and, hence, is not stored explicitly. Thus one additional bit remains to represent
the sign of the overall floating-point value; the sign of the exponent is encoded using excess-n
notation.

Determining the minimum number of decimal digits needed to accurately approximate a
transcendental value, such as π, for a given type on a given platform can be tricky and
require some binary-search-like detective work, which is likely why overshooting the precision
without warning is the default on most platforms. One way to establish that all of the
decimal digits in a given floating-point literal are relevant for a given floating-point type is
to compare that literal and a similar one with its least significant decimal digit removed6:
static_assert(3.1415926535f != 3.141592653f, "too precise for float");

// This assert will fire on a typical platform.

static_assert(3.141592653f != 3.14159265f, "too precise for float");
// This assert too will fire on a typical platform.

static_assert(3.14159265f != 3.1415926f, "too precise for float");
// This assert will not fire on a typical platform.

static_assert(3.1415926f != 3.141592f, "too precise for float");
// This assert too will not fire on a typical platform.

If the values are not the same, then that floating-point type can make use of the precision
suggested by the original literal; if they are the same, however, then it is likely that the
available precision has been exceeded. Iterative use of this technique by developers can help
them to empirically narrow down the maximal number of decimal digits a particular platform

6Note that affixing the f (literal suffix) to a floating-point literal is equivalent to applying a
static_cast<float> to the (unsuffixed) literal:

static_assert(3.14'159'265'358f == static_cast<float>(3.14'159'265'358),"");

155

lorihughes
Inserted Text
can 

lorihughes
Cross-Out

lorihughes
Inserted Text
implies that the type of the literal is `float`.

lorihughes
Cross-Out




