
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 157 — #183

i
i

i
i

i
i

Section 1.2 C++14 Variable Templates

Templated Variable Declarations/Definitions

Traditional template syntax is extended to define, in namespace or class (but not function)
scope, a family of like-named variables that can be instantiated explicitly.

Description

By beginning a variable declaration with the familiar template-head syntax (e.g.,
template <typename T>), we can create a variable template, which defines a family of vari-
ables having the same name (e.g., exampleOf):
template <typename T> T exampleOf; // variable template defined at file scope

Like any other kind of template, a variable template can be instantiated explicitly by pro-
viding an appropriate number of type or non-type arguments:
#include <iostream> // std::cout

void initializeExampleValues()
{

exampleOf<int> = ­1;
exampleOf<char> = 'a';
exampleOf<float> = 12.3f;

}

void printExampleValues()
{

initializeExampleValues();
std::cout << "int = " << exampleOf<int> << "; "

<< "char = " << exampleOf<char> << "; "
<< "float = " << exampleOf<float> << ';';

// outputs "int = ­1; char = a; float = 12.3;"
}

In the example above, the type of each instantiated variable is the same as its template
parameter, but this matching is not required. For example, the type might be the same for all
instantiated variables or derived from its parameters, such as by adding const qualification:

157

lorihughes
Cross-Out

lorihughes
Inserted Text
, each of which

lorihughes
Cross-Out

lorihughes
Inserted Text
independently

lorihughes
Cross-Out

lorihughes
Inserted Text
a particular instantiation of a variable template can be referred to

lorihughes
Cross-Out




