
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 161 — #187

i
i

i
i

i
i

Section 1.2 C++14 Variable Templates

With the definition in the previous example, we can provide a toRadians function template
that performs at maximum runtime efficiency by avoiding needless type conversions during
the computation:
template <typename T>
constexpr T toRadians(T degrees)
{

return degrees * (pi<T> / T(180));
}

Reducing verbosity of type traits

A type trait is an empty type carrying compile-time information about one or more aspects
of another type. The way in which type traits have been specified historically has been to
define a class template having the trait name and a public static data member convention-
ally called value, which is initialized in the primary template to false. Then, for each type
that wants to advertise that it has this trait, the header defining the trait is included, and
the trait is specialized for that type, initializing value to true. We can achieve precisely this
same usage pattern replacing a trait struct with a variable template whose name represents
the type trait and whose type of variable itself is always bool. Preferring variable templates
in this use case decreases the amount of boilerplate code, both at the point of definition
and at the call site.1

Consider, for example, a Boolean trait designating whether a particular type T can be
serialized to JSON:
// isSerializableToJson.h:

template <typename T>
constexpr bool isSerializableToJson = false;

The header above contains the general variable template trait that, by default, concludes
that a given type is not serializable to JSON. Next we consider the streaming utility itself:

1As of C++17, the Standard Library provides a more convenient way of inspecting the result of a
type trait, by introducing variable templates named the same way as the corresponding traits but with an
additional _v suffix:

// C++11/14
bool dc1 = std::is_default_constructible<T>::value;

// C++17
bool dc2 = std::is_default_constructible_v<T>;

This delay is a consequence of the train release model of the Standard: Thoughtful application of the new
feature throughout the vast Standard Library required significant effort that could not be completed before
the next release date for the Standard and thus was delayed until C++17.

161

lorihughes
Cross-Out

lorihughes
Inserted Text
point of use

lorihughes
Cross-Out

lorihughes
Inserted Text
its

lorihughes
Inserted Text
s




