
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 169 — #195

i
i

i
i

i
i

Section 2.1 C++11 alignas

In contrast, whether any extended alignment is supported at all and, if so, in which contexts,
is implementation defined.1 For example, the strictest supported extended alignment for a
variable with static storage duration might be as large as 228 or 229 or as small as 213.
Since many aspects pertaining to the alignment requirements are implementation defined,
we will use a specific platform to illustrate the behavior of alignas throughout this feature’s
section. Accordingly, the examples below show the behavior observed for the Clang compiler
targeting desktop x86-64 Linux.

Strengthening the alignment of a particular object

In its most basic form, the alignas specifier strengthens the alignment requirement of a
particular object. The desired alignment requirement is an integral constant expression
provided as an argument to alignas:
alignas(8) int i; // OK, i is aligned on an 8­byte address boundary.
int j alignas(8), k; // OK, j is 8 byte aligned; alignment of k is unchanged.

If more than one alignment pertains to a given object, the strictest alignment value is
applied:
alignas(4) alignas(8) alignas(2) char m; // OK, m is 8­byte aligned.
alignas(8) int n alignas(16); // OK, n is 16­byte aligned.

For a program to be well formed, a specified alignment value must satisfy three
requirements.

1. Be either zero or a non-negative integral power of two of type std::size_t (0, 1, 2,
4, 8, 16…)

2. Be larger or equal to what the alignment requirement would be without the alignas
specifier

3. Be supported on the platform in the context in which the entity appears

1Implementations might warn when the alignment of a global object exceeds some maximal hardware
threshold, such as the size of a physical memory page, e.g., 4096 or 8192. For automatic variables defined
on the program stack, making alignment more restrictive than what would naturally be employed is seldom
desired because at most one thread is able to access proximately located variables there unless explicitly
passed in via address to separate threads; see Use Cases — Avoiding false sharing among distinct objects
in a multithreaded program on page 174. Note that, in the case of i0 in the alignas(32) line in the first
code snippet on page 170, a conforming platform that did not support an extended alignment of 32 would
be required to report an error at compile time.

169

lorihughes
Cross-Out




