
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 171 — #197

i
i

i
i

i
i

Section 2.1 C++11 alignas

int y; // size 4; alignment 16
char b[44]; // padding
double z; // size 8; alignment 64
char c[56]; // padding (optional)

}; // size 128; alignment 64

Again, if more than one alignment specifier pertains to a given data member, the strictest
applicable alignment value is applied:
struct T4
{

alignas(2) char
c1 alignas(1), // size 1; alignment 2
c2 alignas(2), // size 1; alignment 2
c4 alignas(4); // size 1; alignment 4

}; // size 8; alignment 4

Strengthening the alignment of a user-defined type

The alignas specifier can also be used to specify alignment for UDTs, such as a class,
struct, union, or enum. When specifying the alignment of a UDT, the alignas keyword is
placed after the type specifier (e.g., class) and just before the name of the type (e.g., C):
class alignas(2) C { }; // OK, aligned on a 2byte boundary; size = 2
struct alignas(4) S { }; // OK, aligned on a 4byte boundary; size = 4
union alignas(8) U { }; // OK, aligned on an 8byte boundary; size = 8
enum alignas(16) E { }; // OK, aligned on a 16byte boundary; size = 4

Notice that, for each of class, struct, and union in the example above, the sizeof objects
of that type increased to match the alignment; in the case of the enum, however, the size
remains that of the default underlying type, e.g., 4 bytes, on the current platform. When
alignas is applied to an enumeration E, the Standard does not indicate whether padding
bytes are added to E’s object representation, affecting the result of sizeof(E).2

Again, specifying an alignment that is less than what would be without the alignas specifier
is ill formed:
struct alignas(2) T0 { int i; };

// Error, alignment of T0 (2) is less than that of int (4).
struct alignas(1) T1 { C c; };

// Error, alignment of T1 (1) is less than that of C (2).

2The implementation variance resulting from this lack of clarity in the Standard was captured in CWG
issue 2354 (miller17). The outcome of the core issue was to completely remove permission for alignas to be
applied to enumerations; see iso18a. Therefore, conforming implementations will eventually stop accepting
the alignas specifier on enumerations in the future.

171

lorihughes
Cross-Out

lorihughes
Inserted Text
class key

lorihughes
Inserted Text
>=

lorihughes
Inserted Text
>=

lorihughes
Cross-Out

lorihughes
Cross-Out

[retain the final period and FN marker]

lorihughes
Cross-Out

lorihughes
Inserted Text
The specification was unclear and implementations varied regarding how enums would be handled, in particular whether padding bytes would increase the size of the enum; this problem was captured in CWG issue 2354 (miller17). As a result of the resolution of that core issue, alignment specifiers on enums are simply not allowed.

