“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 171 — #197

Section 2.1 C++11 alignas
int v // size 4; alignment 16
char b[44]; // padding
double z; // size 8; alignment 4

char c[56]; // padding (optional)
}; // size 128; alignment 64

Again, if more than one alignment specifier pertains to a given data member, the strictest
applicable alignment value is applied:

struct T4
{

alignas(2) char

cl alignas(1l), // size 1; alignment 2
c2 alignas(2), // size 1,; alignment 2
c4 alignas(4); // size 1; alignment 4
}; // size 8; alignment 4

Strengthening the alignhment of a user-defined type

The alignas specifier can also be used to specify alignment for UDTs, such as a class,
struct, union, or enum. When specifying the alignment of a UDT, the alignas keyword is
placed after the type-specifte (e.g., class) and just before the name of the type (e.g., C):

class alignas(2) C { }; // OK, aligned on a 2-byte boundary; size = 2
struct alignas(4) S { }; // OK, aligned on a 4-byte boundary,; size 4
union alignas(8) U { }; // 0K, aligned on an 8-byte boundary,; size 8
enum alignas{l16)-E{}; - : — =

Notice that, for each of class, struct, and union in the example above, the sizeof objects
of that type increased to match the ahgnment-rn—t—he—ease—of—t—he—emm—hmvever—t—he—srze

mmamfhaﬁ@%&h&&efauﬁ&ﬁd%%gﬁp&,eg—%byﬁemfhm%ﬁpﬁﬁorﬂ% 5 - eet - !

Again, specifying an alignment that is less than what would be without the alignas specifier
is ill formed:

struct alignas(2) TO0 { int i; };

// Error, alignment of TO (2) is less than that of int (4).
struct alignas(1) T1 { C c; };

// Error, alignment of T1 (1) is less than that of C (2).

171

lorihughes
Cross-Out

lorihughes
Inserted Text
class key

lorihughes
Inserted Text
>=

lorihughes
Inserted Text
>=

lorihughes
Cross-Out

lorihughes
Cross-Out

[retain the final period and FN marker]

lorihughes
Cross-Out

lorihughes
Inserted Text
The specification was unclear and implementations varied regarding how enums would be handled, in particular whether padding bytes would increase the size of the enum; this problem was captured in CWG issue 2354 (miller17). As a result of the resolution of that core issue, alignment specifiers on enums are simply not allowed.

