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struct D4 : S4
{

char d; // size 1; alignment 1
}; // size 3; alignment 1

Finally, virtual functions and virtual base classes invariably introduce an implicit virtual-
table-pointer member having a size and alignment corresponding to that of a memory
address (e.g., 4 or 8) on the target platform:
struct S5
{

virtual ~S5();
}; // size 8; alignment 8

struct D5 : S5
{

char d; // size 1; alignment 1
}; // size 16; alignment 8

Cache lines; L1, L2, and L3 cache; pages; and virtual memory

Modern computers are highly complex systems, and a detailed understanding of their intri-
cacies is unnecessary to achieve most of the performance benefits. Still, certain general
themes and rough thresholds aid in understanding how to squeeze just a bit more out of
the underlying hardware. In this section, we sketch fundamental concepts that are common
to all modern computer hardware; although the precise details will vary, the general ideas
remain essentially the same.
In its most basic form, a computer consists of central processing unit (CPU) having internal
registers that access main memory (MM). Registers in the CPU (on the order of hundreds
of bytes) are among the fastest forms of memory, while MM, typically many gigabytes, is
orders of magnitude slower. An almost universally observed phenomenon is that of locality
of reference, which suggests that data that resides in close proximity in the virtual address
space is more likely to be accessed together in rapid succession than more distant data.
To exploit the phenomenon of locality of reference, computers introduce the notion of a
cache that, while much faster than MM, is also much smaller. Programs that attempt to
amplify locality of reference will, in turn, often be rewarded with faster run times. The
organization of a cache and, in fact, the number of levels of cache, e.g., L1, L2, L3,. . ., will
vary, but the basic design parameters are, again, more or less the same. A given level of cache
will have a certain total size in bytes, invariably an integral power of two. The cache will be
segmented into what are called cache lines whose size — a smaller power of two — divides
that of the cache itself. When the CPU accesses MM, it first looks to see if that memory is
in the cache; if it is, the value is returned quickly, known as a cache hit. Otherwise, the
cache lines containing that data are fetched from the next higher level of cache or from MM
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and placed into the cache (known as a cache miss), possibly ejecting other less recently
used ones.11

Data residing in distinct cache lines is physically independent and can be written concur-
rently by multiple threads, possibly running on separate cores or even processors. Logically
unrelated data residing in the same cache line, however, is nonetheless physically coupled;
two threads that write to such logically unrelated data will find themselves synchronized by
the hardware. Such unexpected and typically undesirable sharing of a cache line by unrelated
data acted upon by two concurrent threads is known as false sharing. One way of avoiding
false sharing is to align such data on a cache-line boundary, thus rendering impossible the
accidental colocation of such data on the same cache line. Another, more broad-based design
approach that avoids lowering cache utilization is to ensure that data acted upon by a given
thread is kept physically separate, e.g., through the use of local, arena memory allocators.12

Finally, even data that is not currently in cache but resides nearby in MM can benefit from
locality. The virtual address space, synonymous with the size of a void* (typically 64 bits
on modern general-purpose hardware), has historically well exceeded the physical memory
available to the CPU. The operating system must therefore maintain a mapping in MM
from what is resident in physical memory and what resides in secondary storage, e.g., on
disc. In addition, essentially all modern hardware provides a translation-lookaside buffer
(TLB)13 that caches the addresses of the most recently accessed physical pages, providing
yet another advantage to having the working set, i.e., the current set of frequently accessed

11Conceptually, the cache is often thought of as being able to hold any arbitrary subset of the most
recently accessed cache lines. This kind of cache is known as fully associative. Although it provides the
best hit rate, a fully associative cache requires the most power along with significant additional chip area
to perform the fully parallel lookup. Direct-mapped cache associativity is at the other extreme. In direct
mapped, each memory location has exactly one location available to it in the cache. If another memory
location mapping to that location is needed, the current cache line must be flushed from the cache. This
approach has the lowest hit rate, but lookup times, chip area, and power consumption are all optimally
minimized. Between these two extremes is a continuum that is referred to as set associative. A set associate
cache has more than one — typically 2, 4, or 8; see solihin15, section 5.2.1, “Placement Policy,” pp. 136–
141, and hruska20 — location in which each memory location in main memory can reside. Note that, even
with a relatively small N , as N increases, an N -way set associative cache quickly approaches the hit rate of
a fully associative cache at greatly reduced collateral cost; for most software-design purposes, any loss in hit
rate due to set associativity of a cache can be safely ignored.

12lakos17b, lakos19, lakos22
13A TLB is a kind of address-translation cache that is typically part of a chip’s memory management

unit. A TLB holds a recently accessed subset of the complete mapping, itself maintained in MM, from virtual
memory address to physical ones. A TLB is used to reduce access time when the requisite pages are already
resident in memory; its size, e.g., 4K, is capped at the number of bytes of physical memory, e.g., 32Gb,
divided by the number of bytes in each physical page, e.g., 8Kb, but could be smaller. Because it resides on
chip, is typically an order of magnitude faster (SRAM versus DRAM), and requires only a single lookup (as
opposed to two or more when going out to MM), there is an enormous premium on minimizing TLB misses.
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pages, remain small and densely packed with relevant data.14 What’s more, dense working
sets, in addition to facilitating hits for repeat access, increase the likelihood that data that
is coresident on a page or cache line will be needed soon, i.e., in effect acting as a prefetch.
Table 1 provides a summary of typical physical parameters found in modern computers
today.

Table 1: Various sizes and access speeds of typical memory for modern
computers

Memory Type Typical Memory Size (Bytes) Typical Access Times
CPU Registers 512 … 2048 ∼250ps

Cache Line 64 … 256 NA
L1 Cache 16Kb … 64Kb ∼1ns
L2 Cache 1Mb … 2Mb ∼10ns
L3 Cache 8Mb … 32Mb ∼80ns … 120ns
L4 Cache 32Mb … 128Mb ∼100ns … 200ns

Set Associativity 2 … 64 NA
TL 4 words … 65536 words ∼10ns … 50ns

Physical Memory Page 512 … 8192 ∼100ns … 500ns
Virtual Memory 232 bytes … 264 bytes ∼10µs … 50µs

Solid-State Disc (SSD) 256Gb … 16Tb ∼25µs … 100µs
Mechanical Disc Huge ∼5ms … 10ms

Clock Speed NA ∼4GHz

14Note that memory for handle-body types (e.g., std::vector or std::deque) and especially node-based
containers (e.g., std::map and std::unordered_map), originally allocated within a single page, can — through
deallocation and reallocation or even move operations — become scattered across multiple, perhaps many,
pages, thus causing what was originally a relatively small working set to no longer fit within physical memory.
This phenomenon, known as diffusion (which is a distinct concept from fragmentation), is what typically
leads to a substantial runtime performance degradation due to cache line thrashing in large, long-running
programs. Such diffusion can be mitigated by judicious use of local arena memory allocators and deliberate
avoidance of move operations across disparate localities of frequent memory usage.
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