
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 189 — #215

i
i

i
i

i
i

Section 2.1 C++11 alignof

template <typename T>
const T& as() const; // member template accessor

// ...

}; // Size of MyAny is 40; alignment of MyAny is alignof(char*), e.g., 8.

We could, in addition, use the alignas attribute to ensure that the minimal alignment of
d_buffer is at least 8 (or even 16):

// ...
alignas(8) char d_buffer[39]; // small buffer aligned to, at least, 8
// ...

We chose the size of d_buffer in the example above to be 39 for two reasons. First, we
decided that we want 32-byte types to fit into the buffer, meaning that the size of d_buffer
should be at least 32. Combined with the use of char for the d_onHeapFlag, which is guar-
anteed to have the size of 1, we require that sizeof(MyAny) >= 33. Second, we want to
ensure that no space is wasted on padding. On platforms where alignof(MyAny) is 8, which
will be the case for many 64-bit platforms, sizeof(MyAny) would be 40, which we choose to
achieve by increasing the useful capacity to 39 instead of having the compiler add unused
padding.
The templated constructor of MyAny can then decide, potentially at compile time, whether
to store the given object x in the internal small buffer storage or on the heap, depending on
x’s size and alignment:
template <typename T>
MyAny::MyAny(const T& x)
{

if (sizeof(x) <= 39 && alignof(T) <= alignof(char*))
{

// Store x in place in the small buffer.
new(d_buffer) T(x);
d_onHeapFlag = false;

}
else
{

// Store x on the heap and its address in the buffer.
d_buf_p = reinterpret_cast<char*>(new T(x));
d_onHeapFlag = true;

}
}

189

lorihughes
Cross-Out

lorihughes
Inserted Text
sizeof(d_buffer)




