“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 196 — #222

auto Variables Chapter 2 Conditionally Safe Features

Just as how function template argument deduction never deduces a reference type for its
by-value argument, a variable declared with an unqualified auto is never deduced to have a

reference type:

int val = 3;
int& ref val;
auto tmp = ref; // Type of tmp is deduced to be int,

not

int&.

Augmenting auto with reference qualifiers and cv-qualifiers, however, enables us to control
whether the deduced type is a reference and whether it is const and/or volatile:

auto val = 3;
// Type of val is deduced to be int,
// the same as the argument for template <typename

const auto cval = val;
// Type of cval is deduced to be const int,
// the same as the argument for template <typename

auto& ref = val;
// Type of ref is deduced to be intg&,
// the same as the argument for template <typename

auto& crefl = cval;
// Type of crefl is deduced to be const int&,
// the same as the argument for template <typename

const auto& cref2 = val;
// Type of cref2 is deduced to be const int&,
// the same as the argument for template <typename

™

™

™

™

T

void deducer(T).

void deducer(const T).

void deducer(T&).

void deducer(T&).

void deducer(const T&).

Note that qualifying auto with && does motjesult in deduction of an rvalue reference (see
Section 2.1.“ Rvalue References” on page 710), but, in line with function template argument
deduction rules, would be treated as a forwarding reference (see Section 2.1.“Forwarding
References” on page 377). A variable declared with auto&& will, therefore, result in an
lvalue reference or an rvalue reference depending on the value category of its initializer:

double doStuff();

int val = 3;
const int cval 7;

// Deduction rules are the same as for template <typename T> void deducer(T&&):

auto&& lrefl = val;
// Type of lrefl is deduced to be inté&.

auto&& lref2 = cval;
// Type of lref2 is deduced to be const int&.

196


lorihughes
Cross-Out

lorihughes
Inserted Text
not necessarily

[no ital]




