
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 203 — #229

i
i

i
i

i
i

Section 2.1 C++11 auto Variables

// without auto:
MyRanges::TransformRange<

MyRanges::FilterRange<decltype(employees), JoinedInYear>,
&Employee::name

> newEmployeeNames1 =
employees | MyRanges::filter(JoinedInYear(2019))

| MyRanges::transform(&Employee::name);

// with auto:
auto newEmployeeNames2 =

employees | MyRanges::filter(JoinedInYear(2019))
| MyRanges::transform(&Employee::name);

Improving resilience to library code changes

auto might be used to indicate that code using the variable doesn’t rely on a specific type
but rather on certain requirements that the type must satisfy. Such an approach might give
library implementers more freedom to change return types without affecting the semantics of
their clients’ code in projects where automated large-scale refactoring tools are not available,
but see Potential Pitfalls — Lack of interface restrictions on page 208. As an example,
consider the following library function:
std::vector<Node> getNetworkNodes();

// Return a sequence of nodes in the current network.

As long as the return value of the getNetworkNodes function is only used for iteration, it
is not pertinent that an std::vector is returned. If clients use auto to initialize variables
storing the return value of this function, the implementers of getNetworkNodes can migrate
from std::vector to, for example, std::deque, requiring their clients to recompile only and
make no changes to their code.
// without auto:
void testConcreteContainer()
{

const std::vector<Node>& nodes = getNetworkNodes();
for (const Node& node : nodes) { /*...*/ }

// prevents migration
}

// with auto:
void testDeducedContainer()
{

const auto& nodes = getNetworkNodes();
for (const Node& node : nodes) { /*...*/ }

// The return type of getNetworkNodes can be silently
// changed while retaining correctness of the user code.

}

203

lorihughes
Cross-Out

lorihughes
Inserted Text
const std::string& (Employee::*)() const




