
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 205 — #231

i
i

i
i

i
i

Section 2.1 C++11 auto Variables

{
return;

}

user.name()[0] = std::toupper(user.name()[0]);
}

This function was then incorrectly refactored to avoid repetition of the user.name() invo-
cation. However, a missing reference qualification leads not only to an unnecessary copy of
the string, but also to the function failing to perform its job:
void capitalizeName1(User& user)
{

auto name = user.name(); // Bug, unintended copy

if (name.empty())
{

return;
}

name[0] = std::toupper(name[0]); // Bug, changes the copy
}

Furthermore, even a fully cv-ref-qualified auto might still prove inadequate in cases as
simple as introducing a variable for a returned-temporary value. As an example, consider
refactoring the contents of this simple function:
void testExpression()
{

useValue(getValue());
}

For debugging or readablity, it can help to use an intermediate variable to store the results
of getValue():
void testRefactoredExpression()
{

auto&& tempValue = getValue();
useValue(tempValue);

}

The above invocation of useValue is not equivalent to the original expression; the semantics
of the program might have changed because tempValue is an lvalue expression. To get
close to the original semantics, std::forward and decltype must be used to propagate
the original value category of getValue() to the invocation of useValue; see Section 2.1.
“Forwarding References” on page 377:

205

lorihughes
Cross-Out

lorihughes
Inserted Text
std::toupper(static_cast<unsigned char>(user.name()[0]));

lorihughes
Cross-Out

lorihughes
Inserted Text
std::toupper(static_cast<unsigned char>(name[0]));

lorihughes
Pencil
[move code comment to next line and align with comment above]




