
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 210 — #236

i
i

i
i

i
i

auto Variables Chapter 2 Conditionally Safe Features

#include <cctype> // std::tolower

#include <encoder.h>

void lowercaseEncode(std::string* result, const std::string& input)
{

auto encodedLength = Encoder::encodedLengthFor(input);

result­>resize(encodedLength);
Encoder::encode(result­>begin(), input);

while (­­encodedLength >= 0) // (1)
{

(*result)[encodedLength] = std::tolower((*result)[encodedLength]);
}

}

The encodedLength variable in the example above uses auto to deduce its type from the
return value of Encoder::encodedLengthFor. If the maintainers of the Encoder library
changed the return type of encodedLengthFor function to an unsigned type, e.g.,
std::size_t, instead of int, the lowercaseEncode function would become defective due
to different behavior of decrementing 0 for unsigned types.

Surprising deduction for list initialization

auto type-deduction rules differ from those of function templates if brace-enclosed initializer
lists are used. Function template argument deduction will always fail, whereas, according to
C++11 rules, std::initializer_list will be deduced for auto.
auto example0 = 0; // copy initialization, deduced as int
auto example1(0); // direct initialization, deduced as int
auto example2{0}; // list initialization, deduced as std::initializer_list<int>

template <typename T> void func(T);

void testFunctionDeduction()
{

func(0); // T deduced as int
func({0}); // Error

}

This surprising behavior was, however, widely regarded as a mistake.4

4This erroneous behavior was formally rectified in C++17 with, e.g., auto i0 deducing int. Furthermore,
mainstream compilers had applied this deduction-rule change retroactively as early as GCC 5.1 (c. 2015),
Clang 3.8 (c. 2016), and MSVC 19.00 (c. 2015), with the revised rule being applied even if std=c++11 flag is
explicitly supplied.

210

lorihughes
Inserted Text
{

lorihughes
Inserted Text
}

lorihughes
Cross-Out

lorihughes
Inserted Text
(*result)[encodedLength] =
 std::tolower(static_cast<unsigned char>((*result)[encodedLength]));

lorihughes
Pencil
[delete blank line to allow space for changes]

