“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 221 — #247

Section 2.1 C++11 Braced Init
Uux={ };, // OK, value-initializes x.i = 0
Uy ={1 3}, // 0K, copy-initializes x.1i = 1
uz=4{""3%, // Error, cannot initialize z.i with ""

Let’s review the various ways in which we might attempt to initialize an object of aggregate
type A2 in the body of a function, test, i.e., defined at function scope:

struct A2 { int i; }; // aggregate with a single data member

void test()

{
A2 al; // default init: i is not initialized!
const A2& a2 = A2(); // value init: i is 0.
A2 a3 = A2(); // value init followed by copy init: i is 0.
A2 a4(); // 0ops, function declaration!
A2 a5 = {5 }; // aggregate initialization employing copy init
A2 a6 = { }; // " " " value "
A2 a7 = {5, 6 };, // Error, too many initializers for aggregate A2
static A2 a8; // zero-initialized, then (no-op) default init
}

Note the following in the sample code above.

e al — Since al is default initialized, each data member within the aggregate is itself
independently default initialized. For scalar types, such as an int, the effect of default
initialization at function scope is a no-op, i.e., al.i is not initialized. Any attempt to
access the contents of a1.i has undefined behavior.

e a2 and a3 — In the cases of both a2 and a3, a temporary of type A2 is first value
initialized. Then, the temporary is bound to a reference for a2, extending its lifetime,
whereas for a3, the temporary is used to copy-initialize the named variable. Both
a2.i and a3.1i are initialized to the value ©.

e a4 — Notice that we are unable to create a value-initialized local variable, a4, by
applying parentheses since that would be interpreted as declaring a function taking
no arguments and returning an object of type A2 by value; see Use Cases — Avoiding
the most vexing parse on page 237.

e a5, a6, and a7 — C++03 supports aggregate initialization using braced syntax, as
illustrated by a5, a6, and a7 in the code snippet above. The local variable a5 is copy
initialized such that a5.1i has the user-supplied value 5, whereas a6 is value initialized
since there are no supplied initializers; hence, a6.1 is initialized to 0. Attempting to
pass a7 two values to initialize a single data member results in a compile-time error.
Note that had class A2 held a second data member, the statement initializing a5 would
have resulted in copy initialization of the first and value initialization of the second.

221


lorihughes
Cross-Out

lorihughes
Inserted Text
y




