
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 222 — #248

i
i

i
i

i
i

Braced Init Chapter 2 Conditionally Safe Features

• a8 — Because a8 has static storage duration, it is first zero initialized, i.e., a8.i is set
to 0, and then it is default initialized, which is a no-op for the same reasons that it is
a no-op for a1.

Finally, note that a scalar can be thought of as if it were an array of one element, though
note that scalars are never subject to array-to-pointer decay; in fact, if we were to take
the address of any scalar and add 1 to it, the new pointer value would represent the one-
past-the-end iterator for that scalar’s implied array of length 1. Similarly, scalars can be
initialized using aggregate initialization, just as if they were single-element arrays, where
the braced list for a scalar can contain zero or one elements. In C++03, however, scalars
cannot be initialized from an empty brace:
int i = { }; // Error in C++03; OK in C++11 (i is 0).
int j = { 1 }; // OK, i is 1.
double k = { 3.14 }; // OK, k is 3.14.

Braced initialization in C++11

Everything we’ve discussed so far, including braced initialization of aggregates, is well
defined in C++03. This same braced-initialization syntax — modified slightly so as to
preclude narrowing conversions (see the next section) — is extended in C++11 to work
consistently and uniformly in many new situations. This enhanced braced-initialization
syntax is designed to better support the two dual initialization categories discussed in
C++03 initialization syntax review on page 215 as well as entirely new capabilities includ-
ing language-level support for lists of initial values implemented using the C++ Standard
Library’s std::initializer_list class template.

C++11 restrictions on narrowing conversions

Narrowing conversions, a.k.a. lossy conversions, are a notorious source of runtime
errors. One of the important properties of list initializations implemented using the C++11
braced-initialization syntax is that error-prone narrowing conversions are no longer per-
mitted. Consider, for example, an int array, ai, initialized with various built-in literal values:
int ai[] =
{ // C++03 C++11

5, // (0) OK OK
5.0, // (1) OK Error, narrowing double to int conversion is not allowed.
5.5, // (2) OK Error, narrowing double to int conversion is not allowed.
"5", // (3) Error Error, no const char* to int conversion exists.

};

In C++03, floating-point literals would be coerced to fit within an integer even if the con-
version was known to be lossy, e.g., line (2) in the code snippet above would initialize ai[2]
to 5. By contrast, C++11 disallows any such implicit conversions in braced initializations
even when the conversion is known not to be lossy, e.g., element ai[1] above.

222

lorihughes
Cross-Out

lorihughes
Inserted Text
j




