“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 225 — #251

Section 2.1 C++11 Braced Init

int b[] ={0, i, j };, // Error, cannot narrow j from long to int

struct S { int a; };

Ssi={0 };, // O

Ss2={1i 3}, // 0K

Ss3 ={0L 3}, // 0K, OL is an integer constant expression.
Ss4={3 }; // Error, narrowing

In addition, the rules for value initialization now state that members without a specific
initializer value in the braced list are “as-if” copy initialized from {}. These rules will result in
an error when initializing a member that has an explicit default constructor. Furthermore,
from C++14 onward, if such a member has a default member initializer, then that member
is initialized from the default member initializer; see Section 1.2.“Aggregate Init ’14” on
page 138. Note that if the member is of reference type and no initializer is provided, the
initialization is ill formed.

Regardless of whether the aggregate itself is initialized using a copy initialization or
direct initialization, the members of the aggregate will be copy initialized from the cor-
responding initializer:

struct E { }; // empty type

struct AE { int x; E y; E z; }; // aggregate comprising several empty objects
struct S { explicit S(int = 0) {} }; // class with explicit default constructor
struct AS{ int x; Svy; S z; }; // aggregate comprising several S objects
AE aed; // OK

AE aed = {}; // OK

AE ael = { 0 }; // OK

AE ae2 = { 0, {} }; // OK

AE ae3 = { 0, {}, {3 }; // OK

AS asd; // OK

AS as0 = {3}, // OK in 03; Error in 11 calling explicit ctor for S
AS asl = { 0 }; // OK in 03; Error in 11 calling explicit ctor for S
AS as2 = { 0, S() }; // OK in 03; Error in 11 calling explicit ctor for S

AS as3 = { 0, S(), S() };, // OK, all the aggregate's members have an initializer.

To better support generalizing the syntax of bracginitialization in a style similar to aggregate
initialization, an aggregate can be initialized from an object of the same type through
aggregate initialization in C++11 as well as through direct initialization per C++03:

S x{}; // OK, value initialization
Sy ={x};, // OK in C++11; copy initialization via aggregate-initialization syntax

Otherwise, initialization of aggregates in C++11 is the same where it would have a meaning
in C+403 and is correspondingly extended into new places where braced initialization is

permitted, as documented in the following subsections.

225


lorihughes
Inserted Text
d




