
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 227 — #253

i
i

i
i

i
i

Section 2.1 C++11 Braced Init

Employing direct initialization, e.g., x0 in the code snippet below, selects the most appro-
priate constructor, regardless of whether it is declared to be explicit, and successfully uses
that one; employing copy initialization, e.g., x1, drops explicit constructors from the overload
set before determining a best match; and employing copy list initialization, e.g., x2, again
includes all constructors in the overload set but is ill formed if the selected constructor is
explicit:
Q x0(0); // OK, direct initialization calls Q(int).
Q x1 = 1; // OK, copy initialization calls Q(T).
Q x2 = {2}; // Error, copy list initialization selects but cannot call Q(int).
Q x3{3}; // Same idea as x0; direct list initialization calls Q(int).

In other words, the presence of the = coupled with the braced notation, e.g., x2 in the
code example above, forces the compiler to choose the constructor as if it were direct
initialization, e.g., x0, but then forces a compilation failure if the selected constructor turns
out to be explicit. This “consider-but-fail-if-selected” behavior of copy list initialization is
analogous to that of functions declared using = delete; see Section 1.1.“Deleted Functions”
on page 53. Using braces but omitting the = (e.g., x3) puts us back in the realm of direct
rather than copy initialization; see Direct list initialization on page 228.
When initializing references, copy list initialization, i.e., braced syntax, behaves similarly to
copy initialization, i.e., no braces, with respect to the generation of temporaries. For example,
when using a braced list to initialize an lvalue reference, e.g., int& ri or const int& cri
in the code example below, to a scalar of a type that exactly matches it (e.g., int i),
no temporary is created, just as it would not have been without the braces; otherwise, a
temporary will be created, provided that a viable conversion exists and is not narrowing:
#include <cassert> // standard C assert macro

void test()
{

int i = 2; assert(i == 2);
int& ri = { i }; assert(ri == 2); // OK, no temporary created
ri = 3; assert(i == 3); // Original i is affected.

const int& cri = { i }; assert(cri == 3); // OK, no temporary created
ri = 4; assert(cri == 4); // Other reference is affected.

short s = 5; assert(s == 5);
const int& crs = { s }; assert(crs == 5); // OK, temporary is created.
s = 6; assert(crs == 5); // Temporary is unchanged.

long j = 7; assert(j == 7);
const int& crj = { j }; // Error, narrowing conversion from long to int

}

As evidenced by the C-style asserts in the example above, no temporary is created when
initializing either ri or cri since modifying the reference affects the variable supplied as the

227

lorihughes
Inserted Text
&

lorihughes
Cross-Out

lorihughes
Inserted Text
&i

lorihughes
Inserted Text
&

lorihughes
Cross-Out

lorihughes
Inserted Text
&i

lorihughes
Inserted Text
&

lorihughes
Cross-Out

lorihughes
Inserted Text
&s

lorihughes
Pencil
delete two spaces

lorihughes
Cross-Out

lorihughes
Inserted Text
!

lorihughes
Highlight
make sure this still aligns. 




