
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 233 — #259

i
i

i
i

i
i

Section 2.1 C++11 Braced Init

Integrating default member initialization with braced initialization

Another new feature for C++11 is default member initializers for data members in a class;
see Section 2.1.“Default Member Init” on page 318. This new syntax supports both copy
list initialization and direct list initialization. However, initialization with parentheses is not
permitted in this context:
struct S
{

int i = { 13 };

S() { } // OK, i == 13.
explicit S(int x) : i(x) { } // OK, i == x.

};

struct W
{

S a{}; // OK, by default j.i == 13.
S b{42}; // OK, by default j.i == 42.
S c = {42}; // Error, constructor for S is explicit.
S d = S{42}; // OK, direct initialization of temporary for initializer
S e(42); // Error, fails to parse as a function declaration
S f(); // OK, declares member function f

};

List initialization where the list itself is a single argument to a constructor

Another new form of initialization for C++11 is list initialization with a braced list of
arguments to populate a container; see Section 2.1.“initializer_list” on page 553. If a
braced list contains arguments that are all of the same type, then the compiler will look
for a constructor taking an argument of type std::initializer_list<T>, where T is that
common type. Similarly, if a braced list of values can be implicitly converted to a common
type, then a constructor for an std::initializer_list of that type will be preferred. When
initializing from a nonempty braced-initializer list, a matching initializer list constructor
always wins overload resolution. However, value initializing from a pair of empty braces will
prefer a default constructor:
#include <initializer_list> // std::initializer_list

struct S
{
S() {}
S(std::initializer_list<int>) {}
S(int, int);

};

233

lorihughes
Cross-Out

lorihughes
Inserted Text
a

lorihughes
Cross-Out

lorihughes
Inserted Text
b




