
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 240 — #266

i
i

i
i

i
i

Braced Init Chapter 2 Conditionally Safe Features

#include <utility> // std::forward

template <typename T, typename... ARGS>
T factory1(ARGS&&... args)
{

return T(std::forward<ARGS>(args)...); // direct initialization
}

template <typename T, typename... ARGS>
T factory2(ARGS&&... args)
{

return T{std::forward<ARGS>(args)...}; // direct list initialization
}

template <typename T, typename... ARGS>
T factory3(ARGS&&... args)
{

return {std::forward<ARGS>(args)...}; // copy list initialization
}

All three factory functions are defined using perfect forwarding (see
Section 2.1.“Forwarding References” on page 377) but support different subsets of C++
types and might interpret their arguments differently.
function1 returns a value created by direct initialization but, because it uses parentheses,
cannot return an aggregate unless, as a special case, the args list is empty or contains
exactly one argument of the same type T or one convertible to T; otherwise, the attempt to
construct the return value will result in a compilation error.6

function2 returns an object created by direct list initialization. Hence, function2 supports
the same types as function1, plus aggregates. However, due to the use of braced initial-
ization, function2 will reject any types in ARGS that require narrowing conversion when
passed to the constructor (or to initialize the aggregate member) of the return value. Also,
if the supplied arguments can be converted into a homogeneous std::initializer_list
that matches a constructor for T, then that constructor will be selected, rather than the
constructor best matching that list of arguments.
function3 behaves the same as function2 except that it uses copy list initialization and
will thus also produce a compile error if the selected constructor or conversion operator for
the return value is declared as explicit.
There is no one true form of initialization that works best in all circumstances for such
a factory function, and library developers must choose and document in their contract the
form that best suits their needs. Note that the Standard Library runs into this same problem
when implementing factory functions like std::make_shared or the emplace function of
any container. The Standard Library consistently chooses parentheses initialization like

6Note that C++20 will allow aggregates to be initialized with parentheses as well as with braces, which
will result in this form being accepted for aggregates as well.

240

lorihughes
Cross-Out

lorihughes
Inserted Text
actory

lorihughes
Cross-Out

lorihughes
Inserted Text
actory

lorihughes
Cross-Out

lorihughes
Inserted Text
actory

lorihughes
Cross-Out

lorihughes
Inserted Text
actory

lorihughes
Cross-Out

lorihughes
Inserted Text
actory

lorihughes
Cross-Out

lorihughes
Inserted Text
actory

lorihughes
Cross-Out

lorihughes
Inserted Text
actory



i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 241 — #267

i
i

i
i

i
i

Section 2.1 C++11 Braced Init

function1 in the previous code example, so these functions do not work for aggregates
prior to C++20.

Uniform member initialization in generic code

With the addition of general braced initialization to C++11, class authors should consider
whether constructors should use direct initialization or direct list initialization to initialize
their bases and members. Note that since copy initialization and copy list initialization are
not options, whether or not the constructor for a given base or member is explicit will
never be a concern.
Prior to C++11, writing code that initialized aggregate subobjects, including arrays, with
a set of data in the constructor’s member initializer list was not really possible. We could
only default-initialize, value-initialize, or direct-initialize from another aggregate of the same
type.
Starting with C++11, we are able to initialize aggregate members with a list of values, using
aggregate initialization in place of direct list initialization for members that are aggregates:
struct S
{

int i;
std::string str;

};

class C
{

int j;
int a[3];
S s;

public:
C(int x, int y, int z, int n, const std::string t)
: j(0)
, a{ x, y, z } // ill formed in C++03, OK in C++11
, s{ n, t } // ill formed in C++03, OK in C++11
{
}

};

Note that as the initializer for C.j shows in the code example above, there is no requirement
to consistently use either braces or parentheses for all member initializers.
As with the case of factory functions, the class author must make a choice for construc-
tors between adding support for initializing aggregates versus narrowing conversion being
ill formed. As mentioned earlier, since member initialization supports only direct list initial-
ization, there is never a concern regarding explicit conversions in this context:

241

lorihughes
Cross-Out

lorihughes
Inserted Text
actory




