
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 244 — #270

i
i

i
i

i
i

Braced Init Chapter 2 Conditionally Safe Features

In the previous example, due to braced initialization first selecting a constructor and then
checking for narrowing conversion, the non-initializer-list constructor, which would not
require a narrowing conversion, is not considered.
Both of these situations can be resolved by using parentheses or other forms of initialization
than brace lists, which cannot be interpreted as initializer_lists:
#include <initializer_list> // std::initializer_list

struct S
{

S(std::initializer_list<int>); // (1)
S(int i, char c); // (2)
S(int i, double d); // (3)

};

S s3(1, 'c'); // calls (2)
S s4(1, 3.2); // calls (3)

This consideration often comes up with std::vector:
std::vector<char> v{std::size_t(3), 'a'}; // contains 2 elements: '\x03' 'a'
std::vector<char> w(std::size_t(3), 'a'); // contains 3 elements: 'a' 'a' 'a'

For variable v in the code snippet above, the std::initializer_list<char> constructor
overload is selected, even though one creating a vector with a specified number of elements,
e.g., std::size_t(3), having a particular value, e.g., 'a', matches the arguments perfectly.
In contrast, direct initialization of the variable w in the code snippet above does not consider
the std::initializer_list<char> constructor, resulting in w containing three elements
with value 'a'.

Implicit move and named return value optimization might be disabled
in return statements

Using extra braces in a return statement around a value might disable the named return
value optimization or an implicit move into the returned object. Named return value optimi-
zation (NRVO) is an optimization that compilers are allowed to perform when the operand
of a return statement is just the name (i.e., id-expression) of a nonvolatile local variable
(i.e., an object of automatic storage duration that is not a parameter of the function or a
catch clause) and the type of that variable, ignoring cv-qualification, is the same as the
function return type. In such cases, the compiler is allowed to elide the copy implied
by the return expression. Naturally this optimization applies only to functions returning
objects, not pointers or references.
Note that this optimization is allowed to change the meaning of programs that might rely on
observable side effects on the elided copy constructor. Most modern compilers are capable
of performing this optimization in at least simple circumstances, such as where there is only
one return expression for the whole function.

244

lorihughes
Inserted Text
d

lorihughes
Highlight
[set return in code font and statement in gloss font]

lorihughes
Highlight
[set return in code font and statement in gloss font]




