
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 252 — #278

i
i

i
i

i
i

Braced Init Chapter 2 Conditionally Safe Features

Note that this topic is deemed an annoyance, rather than a pitfall, because it affects only
code newly written for C++11 or later using the new forms of initialization syntax, so it does
not break existing C++03 code recompiled with a more modern language dialect. However,
also note that many containers and other types in the C++ Standard Library inherited
such a design and have not been refactored into multiple constructors, although some such
refactoring occurs in later versions of the Standard.

Obfuscation due to opaque use of braced list intializers

Use of braced initializers for function arguments, omitting any hint of the expected object
type at the call site, requires deep familiarity with functions being called to understand
the actual types of arguments being initialized, especially when overload resolution must
disambiguate several viable candidates. Such usage might produce more fragile code as
further overloads are added, silently changing the type initialized by the brace list as a
different function wins overload resolution. Such code is also much harder for a subsequent
maintainer, or casual code reader, to understand:
struct C
{

C(int, int) { }
};

int test(C, long) { return 0; }

int main()
{

int a = test({1, 2}, 3);
return a;

}

This program compiles and runs, returning the intended result. However, consider how the
behavior changes if we add a second overload during subsequent maintenance:
struct C
{

C(int, int) { }
};

int test(C, long) { return 0; }

struct A // additional aggregate class
{

int x;
int y;

};

252

lorihughes
Inserted Text
i

lorihughes
Inserted Text
d




