“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 253 — #279

Section 2.1 C++11 Braced Init

int test(A, int) { return -1; } // overload for the aggregate class

int callTestl()

{
int a = test({1, 2}, 3); // overload resolution prefers the aggregate

return a;

}

Because the overload for A must now be considered, overload resolution might pick a different
result. If we are lucky, then the choice of the A and C overloads becomes ambiguous, and
an error is diagnosed. However, in this case, there was an integer promotion on the second
argument, and the new A overload is now a better match, producing a different program
result. If this overload is added through maintenance of an included header file, this code
will have silently changed meaning without touching the file. If the above flexibility is not
the desired intent, the simple way to avoid this risk is to always name the type of any
temporary variables:

int callTest2()

{
int a = test(C{1, 2}, 3); // Overload resolution prefers struct C.

return a;

auto deduction and braced initialization

C++11 introduces type inference, where an object’s type is deduced from its initialization,
using the auto keyword; see Section 2.1.“auto Variables” on page 195. When presented with
a homogeneous, nonempty list using copy list initialization, auto will deduce the type of the
supplied argument list as an std::initializer_list of the same type as the list values.
When presented with a braced list of a single value using direct list initialization, auto will
deduce the variable type as the same type as the list value:

#include <initializer_list> // std::initializer list

auto g{1}; // OK, deduces g is int
auto h{1, 2, 3}, // Error, auto requires exactly one element in braced list.
auto i = {1}, // OK, deduces i is initializer_list<int>

auto j = {1, 2, 3}; // OK, deduces j is initializer_ list<int>

Note that the declarations of i and j in the code example above would also be errors if the
<initializer_list> header had not been included to supply the std::initializer_list
class template.

Finally, observe that for auto deduction from direct list initialization, an initializer_list
constructor might still be called in preference to copy constructors, even though the syntax
seems restricted to making copies:

253


lorihughes
Highlight
[change variables to objects and set the whole term in gloss font]




