
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 257 — #283

i
i

i
i

i
i

Section 2.1 C++11 constexpr Functions

Compile-Time Invocable Functions

Functions decorated with constexpr are eligible to be invoked as part of a constant
expression.

Description

A constant expression is an expression whose value is determined at compile time — i.e.,
one that could be used, say, to define the size of a C-style array or as the argument to a
static_assert:
enum { e_SIZE = 5 }; // e_SIZE is a constant expression of value 5.
int a[e_SIZE]; // e_SIZE must be a constant expression.
static_assert(e_SIZE == 5, ""); // " " " " " "

Prior to C++11, evaluating a conventional function at compile time as part of a constant
expression was not possible:
inline const int z() { return 5; } // OK, returns a nonconstant expression
int a[z()]; // Error, z() is not a constant expression.
static_assert(z() == 5, ""); // Error, " " " " " "
int a[0 ? z() : 9]; // Error, " " " " " "

Developers, in need of such functionality, would use other means, such as template meta-
programming, external code generators, preprocessor macros, or hard-coded constants (as
shown in the example above), to work around this deficiency.
As an example, consider a metaprogram to calculate the nth factorial number:
template <int N>
struct Factorial { enum { value = N * Factorial<N1>::value }; }; // recursive

template <>
struct Factorial<0> { enum { value = 1 }; }; // base case

Evaluating the Factorial metafunction in the example above on a constant expression
results in a constant expression:
static_assert(Factorial<5>::value == 120, ""); // OK
int a[Factorial<5>::value]; // OK, array of 120 ints

Note, however, that the metafunction can be used only with template arguments that them-
selves must be constant expressions:
int factorial(const int n)
{

static_assert(n >= 0, ""); // Error, n is not a constant expression.
return Factorial<n>::value; // Error, " " " " " "

}

257

lorihughes
Cross-Out

lorihughes
Inserted Text
may be




