“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 259 — #285

Section 2.1 C++11 constexpr Functions

#include <cassert> // standard C assert macro
#include <iostream> // std::cout

void f(int n)
{
assert(factorial(5) == 120);
// OK, factorial(5) might be evaluated at compile time since 5 is a
// constant expression but the argument of assert does not have to be
// a constant expression.

static_assert(factorial(5) == 120, "");
// OK, factorial(5) is evaluated at compile time since arguments of
// static_assert must be constant expressions.

std::cout << factorial(n);
// OK, likely evaluated at run time since n is not a constant
// expression

static_assert(factorial(n) > 0, "");
// Error, n is not a constant expression.

3

As illustrated above, simply invoking a constexpr function with arguments that are constant
expressions does not guarantee that the function will be evaluated at compile time. The only
way to guarantee compile-time evaluation of a constexpr function is to invoke it in places
where a constant expression is mandatory.

If the value of a constant expression is needed at compile time (e.g., for the bounds of an
array) and computing that value involves the execution of an operation that is not available
at compile time (e.g., throw), the compiler will have no choice but to report an error:

constexpr int h(int x) { return x < 5 ? x : throw x; } // OK, constexpr func

int a4[h(4)]; // OK, creates an array of four integers
int a6[h(6)]; // Error, unable to evaluate h on 6 at compile time

In the code snippet above, although we are able to size the file-scope? a4 array because the
path of execution within the valid constexpr function h does not involve a throw, such is

2A common extension of popular compilers to-allow, by default, variable-length arrays within function
bodies but, as illustrated above, never at file or namespace scope:

void g()
{
int a4[h(4)]; // OK, creates an array of four integers
int a6[h(6)]; // Warning: ISO C++ forbids variable-length array a6.
// But with some compilers, h(6) might be invoked at
// run time and throw.

}
It is only by compiling with -wWpedantic that GCC issues a warning.

259


lorihughes
Cross-Out

lorihughes
Inserted Text
s


