“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 26 — #b52

decltype Chapter 1 Safe Features

An entity name passed to decltype, as mentioned above, produces the type of the entity.
If an entity name is enclosed in an additional set of parentheses, however, decltype interprets
its argument as an expression, and its result incorporates the value category:
int i;
decltype(i) 1
decltype((i)) m

i; // -> int
i; // -> int&

Similarly, for all other lvalue expressions, the result of decltype will be an lvalue reference:

int* pi = &i;
decltype(*pi) j = *pi; // -> int&
decltype(++i) k = ++i; // -> int&

Finally, the value category of the expression will be an zvalue if it is a cast to or a function
returning an rvalue reference:

int i;

decltype(static_cast<int&&>(1i)) j = static_cast<int&&>(1i); // -> int&&
int&& g();

decltype(g()) k = g(); // -> int&s&

Much like the sizeof operator (which is also resolved at compile time), the expression
operand of decltype is not evaluated:

void testil()

{

int i = 0;

decltype(i++) j; // equivalent to int j;

assert(i == 0); // The expression i++ was not evaluated.
}

Note that the choice of using the postfix increment is significant; the prefix increment yields
a different type;

void test2()

{
int 1 = 0;
int m = 1;
decltype(++i) k = m; // equivalent to int& k = m;
assert(i == 0); // The expression ++i was not evaluated.
}
Use Cases

Avoiding unnecessary use of explicit typenames

Consider two logically equivalent ways of declaring a vector of iterators into a list of Widgets:

26

lorihughes
Inserted Text
returrn an rvalue reference

lorihughes
Inserted Text
 since i++ and ++i have distinct value categories

