
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 268 — #294

i
i

i
i

i
i

constexpr Functions Chapter 2 Conditionally Safe Features

Notice that declaring a member function, such as setY in the code example above, to
be constexpr implicitly qualifies the member function as being const, thereby making
it an error for any constexpr member function to attempt to modify its own object’s data
members. The inevitable corollary is that any appropriate implementation of copy or move
assignment cannot be declared constexpr in C++11 but can be as of C++14.
Finally, constexpr member functions cannot be virtual3 but can co-exist in the same class
with other member functions that are virtual.

Restrictions on constexpr function bodies (C++11 only)

The list of C++ programming features permitted in the bodies of constexpr functions
for C++11 is small and reflective of the nascent state of this feature when it was first
standardized. To begin, the body of a constexpr function is not permitted to be a function-
try-block:

int g1() { return 0; } // OK
constexpr int g2() { return 0; } // OK, no try block

int g3() try { return 0; } catch(...) {} // OK, not constexpr
constexpr int g4() try { return 0; } catch(...) {} // Error, not allowed

C++11 constexpr functions that are not deleted or defaulted (see Section 1.1.“Deleted
Functions” on page 53 and Section 1.1.“Defaulted Functions” on page 33, respectively) may
consist of only null statements, static assertions (see Section 1.1.“static_assert” on
page 115), using declarations, using directives, and typedef and alias declarations (see
Section 1.1.“using Aliases” on page 133) that do not define a class or enumeration. Other
than constructors, the body of a constexpr function must include exactly one return state-
ment. A constexpr constructor may have a member-initializer list but no other additional
statements, but see Constraints specific to constructors on page 269. Use of the ternary
operator, comma operator, and recursion is allowed:
constexpr int f(int x)
{

; // OK, null statement
static_assert(sizeof(int) == 4, ""); // OK, static assertion
using MyInt = int; // OK, type alias
return x > 5 ? x : f(x + 2), f(x + 1); // OK, ternary, comma, and recursion

}

Many familiar programming constructs such as runtime assertions, local variables, if state-
ments, modifications of function parameters, and using directives that define a type are,
however, not permitted in C++11:
#include <cassert> // standard C assert macro
constexpr int g(int x)
{

3C++20 allows constexpr member functions to be virtual (dimov18).

268

lorihughes
Inserted Text
 (see Annoyances — constexpr member functions are implicitly const-qualified (C++11 only) on page x)


lorihughes
Cross-Out

lorihughes
Inserted Text
but may have no statements with a runtime effect in its body.

lorihughes
Inserted Text
(

lorihughes
Inserted Text
)

lorihughes
Cross-Out

lorihughes
Inserted Text
alias declarations

lorihughes
Cross-Out

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes




