
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 273 — #299

i
i

i
i

i
i

Section 2.1 C++11 constexpr Functions

struct I1b { int i; constexpr I1b() { } }; // Error, i is not init

struct I2a { int i; I2a() = default; }; // OK, but not constexpr
struct I2b { int i; constexpr I2b() = default; }; // Error, i is not init

struct I3a { int i; I3a() : i(0) { } }; // OK, i is init
struct I3b { int i; constexpr I3b() : i(0) { } }; // OK, literal type

struct S0 { I3b v; /* implicit default ctor */ }; // OK, literal type

struct S1a { I3b v; S1a() { } }; // OK, v is init
struct S1b { I3b v; constexpr S1b() { } }; // OK, literal type

struct S2a { I3b v; S2a() = default; }; // OK, literal type
struct S2b { I3b v; constexpr S2b() = default; }; // OK, literal type

The example code above illustrates the subtle differences between a data member of
scalar literal type, e.g., int and one of user-defined literal type, e.g., I3b. Unlike I1a,
which leaves its own data member, i, uninitialized, S1a invariably zero-initializes its
i. Therefore, attempting to apply constexpr to the constructor of I1a is ill formed,
which is not the case for S1a, as illustrated by I1b and S1b above.
Note that, although every literal type needs to have a way to be constructed in a
context requiring a constant expression, not every constructor of a literal type needs
to be constexpr; see Literal types defined on page 278.

6. Value initialization and aggregate initialization, although not always resulting
in constructor invocation, can still occur at compile time. These kinds of initialization
must involve only those operations that can occur during constant evaluation.
For types having a user-provided default constructor, value initialization implies invok-
ing that constructor, thus requiring it to be declared constexpr for it to be evaluated
as part of a constant expression. For types having an implicitly defined (or defaulted;
see Section 1.1.“Defaulted Functions” on page 33) default constructor, value initializa-
tion will first zero-initialize all base-class objects and members and will then default-
initialize the object itself, which places similar restriction on the constructor being
constexpr. If, however, an implicitly defined or defaulted constructor is also trivial,
its invocation will be skipped.6 A default constructor is trivial if (a) it is implicitly

6The original intent was to enable any initialization that involved only those operations that could be
evaluated at compile time to be a valid initialization for a literal type. That a trivial default constructor
was insufficient to make a class a literal type, as it was not going to be a constexpr constructor, was a
flaw originally noted by Alisdair Meredith; see CWG issue 644 (meredith07). The resolution for this issue
was inadvertently undone before C++11 shipped by mistakenly allowing aggregate initialization in lieu of
trivial initialization with other resolutions; see CWG issues 981 (dosreis09) and 1071 (krugler10a). This
flaw was identified again (CWG issue 1452; smith11b), and all relevant compilers adopted the proposed
resolution as a fix, but the Standard itself did not. C++20 removes the requirement that all members and
base classes be initialized in a constexpr constructor (johnson19), removing the flaw by making trivial
default constructors constexpr.

273

lorihughes
Inserted Text
nonempty




