
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 277 — #303

i
i

i
i

i
i

Section 2.1 C++11 constexpr Functions

template <typename T>
constexpr int badSizeOf(T t) { const int s = sizeof(t); return s; }

// This constexpr function template is IFNDR.

Most compilers, when compiling such a specialization for runtime use, will not attempt to
determine if the constexpr would ever be valid. When invoked with arguments that are
themselves constant expressions, they do, however, often detect this ill formed nature and
report the error:
int d[badSizeOf(S1())]; // Error, badSizeOf<S1>(S1) body not return statement
int e[badSizeOf(S0())]; // Error, badSizeOf<S0>(S0) body not return statement
int f = badSizeOf(S1()); // Oops, same issue but might work on some compilers
int g = badSizeOf(S0()); // Oops, same issue but often works without warnings

Importantly, note that each of the four statements in the code snippet above is ill formed
because the badSizeOf function template is itself ill formed. Although the compiler is not
required to diagnose the general case, it is ill formed to attempt to use an instantiation
of badSizeOf in a context requiring a constant expression, e.g., d or e. When used in a
context not requiring a constant expression (e.g., f or g), whether the compiler fails, warns,
or proceeds is a matter of quality of implementation (QoI).

constexpr-function parameter and return types

At this point, we arrive at what is perhaps the most confounding part of the seemingly
cyclical definition of constexpr functions: A function cannot be declared constexpr unless
the return type and every parameter of that function satisfies the criteria for being a literal
type, i.e., the category of types whose objects are permitted to be created and destroyed
when evaluating a constant expression:
struct Lt { int v; constexpr Lt() : v(0) { } }; // literal type
struct Nlt { int v; Nlt() : v(0) { } }; // nonliteral type

Lt f1() { return Lt(); } // OK, no issues
constexpr Lt f2() { return Lt(); } // OK, returning literal type

Nlt f3() { return Nlt(); } // Ok, function is nonconstexpr.
constexpr Nlt f4() { return Nlt(); } // Error, constexpr returning nonliteral

int g1(Lt x) { return x.v; } // OK, no issues
constexpr int g2(Lt x) { return x.v; } // OK, parameter is a literal type.

int g3(Nlt x) { return x.v; } // OK, function is nonconstexpr.
constexpr int g4(Nlt x) { return x.v; } // Error, constexpr taking nonliteral

Consider that all pointer and reference types — being built-in types — are literal types and
therefore can appear in the interface of a constexpr function irrespective of whether they
point to a literal type:

277

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Inserted Text
or refer to

lorihughes
Cross-Out

lorihughes
Inserted Text
Some




