
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 279 — #305

i
i

i
i

i
i

Section 2.1 C++11 constexpr Functions

2. Just as with pointers, every reference type is a literal type irrespective of whether
the type to which it refers is itself a literal type.

int& int& is a literal type
T& T& is a literal type (for any T).
T&& T&& is a literal type (for any T).

3. A class, struct, or union is a literal type if it meets each of these four requirements.

(a) It has a trivial destructor.9

(b) Each nonstatic data member is a nonvolatile literal type.10

(c) Each base class is a literal type.
(d) There is some way to initialize an object of the type during constant evaluation;

either it is an aggregate type, thereby affording aggregate initialization, or it
has at least one constexpr constructor (possibly a template) that is not a copy
or move constructor:
#include <string> // std::string
struct LiteralUDT
{

static std::string s_cache;
// OK, static data member can have a nonliteral type.

int d_datum;
// OK, nonstatic data member of nonvolatile literal type

constexpr LiteralUDT(int datum) : d_datum(datum) { }
// OK, has at least one constexpr constructor

LiteralUDT() : d_datum(-1) { }
// OK, can have nonconstexpr constructors

// constexpr ~LiteralUDT() { } // not permitted until C++20
// No need to define: implicitly generated destructor is trivial.

};

struct LiteralAggregate
{

int d_value1;
int d_value2;

};

9As of C++20, a destructor can be declared constexpr and even both virtual and constexpr.
10In C++17, this restriction is relaxed: For a union to be a literal type, only one, rather than all, of its

nonstatic data members needs to be of a nonvolatile literal type.

279

lorihughes
Highlight
[set the whole term in gloss font and set static in code font]

lorihughes
Highlight
[set the whole term in gloss font and set static in code font]




